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_ Given a general dynamic equilibrium formulation of a time staged model, WL seek’ condltlons
on the distribution of utility functions of mdwxduals whlch imply the model is equxva.lent to a

mathematical program. . ,\P Tt

Gorman and others long ago have observed that Engel curves of average consumption as a
function of income at fixed prices are remarkably linear over a broad range of income of interest

which tapers off at both ends of this range. W& reproduce this phenomenon by assuming ‘(‘a‘)‘ﬂ

that a general polynomial of the second degree has enough parameters (coefficients) to globally
. . . . . « J . . - .. .
represent the utility functions of individual consumers, and {b) the distribution of utility functions

that individuals have is independent of the income they happen to have. W& achieve the latter by

assigning values to the parameters of the utility functions by a random drawing with replacement
from a “population urn” ¢
functional form of the per capita demand function and necessary and sufficient conditions for its

integrability ’ P
Lo R s

Finally, we show5 in the context of the time staged model, that when the population is not too
polarized as to its ta.stes at fixed income levels, a concave objective function always exists, which

maximized subject to the physical ﬁow constrmnts 1mphes the equilibrium conditions. Yog Ao
B e e e T T

1 I 1
. ')(Ut. Kore r',"‘} ) j‘x .o I ,J Aoy ,’.';.;‘. .
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Introduction g
Given a general dynamic equilibrium model, a long standing problem is finding conditions on
the distribution of utility functions of individuals which guarantee that the model is equivalent to
the problem of maximizing a concave objective function of the aggregate consumption variables
subject to the physical constraints of the system. When the two are equivalent, the powerful

software of mathematical programming can be applied to efficiently solve large scale equilibrium
problems.

Our approach differs from past ones by the way we assign values to the set of a parameters of
the utility function of individuals. We first assume the distribution is independent of the income
individuals happen to have. We achieve this independence by placing representative vectors of
parameters values in an “urn” and assigning them to each individual at an income level by a
random drawing with replacement from tLc urn.

1 The authors wish to thank Kenneth Arrow, Gerard Debreu, Robert Dorfman, Dale Jorgenson
and Lawrence J. Lau for their helpful comments.

containing a representative sets of the parameters. We’then derive the
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In the context of a time-staged equilibrium model, we are therefore not interested in deriving
the functional form of the per capita demand function of some future time period. since it is now
a random function, but we are interested in expected demand as a function of prices and per
capita income. By the law of large numbers, the expected per capita demand will differ from actual
future per capita demand insignificantly for a population the size of the U.S. Accordingly we will
be seeking conditions on the distribution of representative utility function parameters in the urn
which imply that these expected per capita demand functions are integrable.

An early controversy which arose in theoretical work on consumer demand concerned the
shape of Engel curves which express at fixed prices average consumption of a particular category of
goods (such as food) as a function of income level. Survey data strongly suggest that these curves
are nearly linear over a broad range of income levels, see Graphs 1-8 at the end of this paper.
Some authors have conjectured that his must be true because the underlying demand functions of
individuals must be linear, or nearly so, at fixed prices over a broad range of individual income
available for consumption.

For example, Gorman in his 1953 paper [9] remarks: “A great deal of work has been done on
Engel curves particularly by Allen and Bowley and Houthakker. The work of Allen and Bowley
was based on the assumption that the classical Engel curves for different individuals at the same
prices were parallel straight lines, but this has been rejected in work of Houthakker in favor of a
doubly logarithmic form. However, the earlier assumption fits the data remarkably well.” [22,23].

Gorman, in the article cited above, finally showed conclusively that average linear demand
could only happen if the underlying individual demand functions are linear in income at fixed

prices.

Since linearity of individual demand functions in income at fixed prices was considered unlikely
for theoretical reasons, researchers have concentrated on using the logarithmic functional form
following the traditional approach to demand analysis found in the pioneering work of Henry
Shuitz, Richard Stone, and Herman Wold, [24,25,26].

The logarithmic utility functions were generalized by Christianson, Jorgenson, and Lau (28,30
who proposed that utility be approximated by a function which is quadratic in the logs of the
~nangumption variables. Certain difficulties in translating from individual demand to aggregate
demand which were present in their early work were overcome by a more general theory which
the authors Jorgenson Lau and Stoker call “exact aggregation”, see [11]. They consider a model
in which each individual has a trans-log utility function which depends on “attributes” of the
individual as well as consumption itself.

By placing restrictions on the way that these attributes enter into the utility function, they
were able to find a model in which demand exactly aggregates thereby deriving per capita and
aggregate demand as a function of prices and a certain class of symmetric statistics of the income
distribution, which includes more than just the mean or total aggregate income. In this way they
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are able to obtain an exact aggregation result without appealing to linearity in individual or average X
demand at various income levels. )

Our approach is motivated theoretically by the observation that when the utility functions
of individuals are polynomial expressions of the second degree in the consumption variables, the
1 demand function of each individual will be linear over a broad range of income at fixed prices

L

tapering off to zero at the poverty end as more and more individuals, in order to maximize their

utility, have to set more and more components of their consumption vector to zero, and leveling "' -
off at the high income end as more and more individuals have income sufficient to purchase their X '
“satiation” vector. Consistent with empirical observation, this implies that expected demand ‘)
functions (Engel curves) are linear over a broad range of income (used for consumption), and this r
in turn implies that the expected per capita demand is linear in per capita income over a broad 0
range of per capita income. :
There is no obvious reason why these steps should lead to an expected per capita demand :"‘\-
function for a given time period ¢ that is integrable; or if integrable within a period why this should a
‘ imply, in the context of a time-staged equilibrium model, that one can replace the dual price % !
constraints by an objective function which can be maximized subject to just the primal system E
of physical-flow constraints to obtain the equilibrium solution. Indeed from Arrow’s Impossibility \."
<\

Theorem, we know that seeking an aggregate utility function for the economy over time could be
a futile quest since in general it need not exist 1, 5, 18, 27).

Conditions for integrability of a demand function have been given by Slutsky, see Varian [19].
We derive a necessary and sufficient condition for integrability based on the derived form of the
expected aggregate demand function for period t.

It all depends on how the parameters of the utility functions of individuals in urn are dis-
tributed. One measure of how much utility functions U* differ from one another is to compare H*,
where H' is the price cross-effect matrix of the i-th utility function in the urn with H any positive
definite matrix used for comparison (such as average H*) by forming H* = H~Y2H'H~1/2 | We
prove, in a worse case scenario, that if p; < 3 + /8 = 5.83 for every 1, where p;, is the ratio of the
largest to smallest eigenvalue of H*, then the expected per capita demand function is integrable.
Moreover, the greater the variability of orientations of the axes of the ellipsoids p' H'p = constant
the higher is the bound for p;.
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Outline of the Paper »
In Part I, we derive the form of the expected per-capita demand function for each discrete time 3
period ¢; in Parts I and III we derive necessary and sufficient conditions for its integraoility; in Part
IV, we present the time-staged dynamic equilibrium model for consumers and producers /investors. .‘
In Part V, we develop a first-order approximation to the expected aggregate demand and utility )
functions for a period which allows one to explicitly express these functions and estimate their g,
parameters. Finally we estimate the parameters of the expected per capita demand function and ‘:“_
‘w1
i
3 }t
)
AN
N
™~

(M 4o

"‘.,DQ -‘ N “N" \"’ ‘ . ' '. 'f'}' ’a . W " 9"...- '-. N. ."\- .‘- - WY —‘ — — . \.ﬁ.‘ ™ ﬁ L .&Q () _l *




R ETN

wr

.

-

e

PRI

e 8

SO RT TN TR R S SR WA WA TG N W R e T T T R T T X O P R T T PO RO P YT

the per capita utility function using survey data and test the theory empirically by using it to
predict time-series data of per capita consumption of various item. when prices and per capita

income are given.

Even when the latter exists, if the numeraire for normalizing period t prices is not suitably
chosen, we prove in the context of time-staged equilibrium model that a utility function that drives
the economy over time need not exist. However, when a numeraire is suitably chosen, the dynamic

equilibrium model is integrable.

Prices normalized by this numeraire differ very little in practice from those obtained by scaling
them so that their average price is unity, see last column of Table 4. Thus, from the viewpoint
of the investor, these prices are equally acceptable for calculating the rates of return of various
investment possibilities. If it is, then it is possible to restate the dynamic equilibrium problem as
a mathematical program and to use non-linear programming software like MINOS to optimize the

primal system ([15].

To test the theory, fits were made to survey data (see Table I) and tested by predicting the
consumption pattern of final consumers for the years 1961 to 1982 as a function of prices and per
capita income used for consumption (see Graphs 9 to 16). We also report on an experiment that
suggests the approximation may be a very good one even if the set of utility functions U* in the
urn differ markedly from one another.

Motivation of our Research

Our presentation here arose out of our efforts beginning in 1975 to build a macro-economic
mode] of U.S. to assess the long- term effects of modernization, innovation, foreign competition,
energy prices, and conservation on the growth of various economic sectors, GNP, and per capita
income. PILOT, is a multi-time period model, quite large, with a data base of over 70,000 tech-
nological coefficients, [4]. Its principal weakness, as we see it, lies not with the numerical results
from various scenario runs (the physical growth of the economy appears to be quite reasonable),
but with our inability to justify the aggregate utility function which we had devised to increase the
standard of living and had been using as the driver as though the U.S. were a planned economy.
To be more precise, the partial derivatives of this somewhat arbitrarily chosen utility function,
interpreted as prices, implied a behavioral response of final consumers to prices and a behavioral
response of producers/investors also to prices, which are almost certain to be out of kilter with

what their observed behaviors would be in the real world.

These considerations led us recently to reverse the process and to reformulate PILOT along
classical economic lines as a dynamic equilibrium model that satisfies the behavioral responses
of final consumers to prices given their income for consumption, and the responses of produc-
ers/investors in choosing activities that yield at least a minimum rate of return. From a mathe-
matical point of view, this is not a dramatic change, since the set of Kuhn-Tucker conditions {12]
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that must be satisfied at the point which maximizes .e utility function, are quite analogous to the
Arrow-Debreu conditions [1,5] that must be satisfied at an equilibrium point. The main difference
is that the general equilibrium problem belongs mathematically to the more general class of com-
plementarity problems which require for solution combining the dual system of price constraints
along with the primal system of physical constraints in one big simultaneous system, |3, 6, 8, 13,
17]. For a problem the size of our PILOT model, this combined systcm is too large to solve directly
and much of our research has been concerned with finding efficient ways to use mathematical pro-
gramming software, like MINOS [15], to solve the system, including ways to decompose the system
into smaller problems and to use their solutions to iteratively converge to an equilibrium.

A fundamental question that has concerned us is reconciling the “prescriptive” (normative)
view of the initial formulation with the “descriptive” (behavioral) view of the dynamic equilibrium
formulation. To be precise, do the realistic behavioral assumptions of an equilibrium model serve as
a driver promoting reasonable growth and well being of the economy when it has the potential for
such growth? We will see later that the dynamic equilibrium formulation implies under reasonable
conditions an objective for the economy the form of which makes it evident why growth in the
economy will occur if it has potential for growth.
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PART I: "
DERIVING THE PER CAPITA DEMAND FUNCTION FOR PERIOD ¢ ,
Notation ;
For discussion involving a fixed period, we will usually omit the time subscript. Thus the con- '
sumption vector of the j-th consumer in period ¢ is denoted by X7 = X{; his budget or personal :
income for consumption is denoted by I = I; measured in period ¢t undiscounted dollars. Expected
; per capita consumption, income, and utility are denoted by X, I;,U; and the corresponding ag- 'i
\ gregates by bold face X; = P,- X¢, I = P, - I, U, = P, - U, where P, is the size of the population o
in period t. _!
'
: We will use the symbol I to denote the identity matrix to avoid confusion with I and I which F
! refer to income. The inner product of a column vector v with itself will be denoted by v? = v'v. The ‘
symbols a, 8,8, A denote scalar constants. L.H.S and R.H.S. are abbreviations for left hand side "
and right hand side of an equation or an inequality relation. The symbol = means approximately )
equal. -
Utility Function of Individuals {’_
Y
The first assumption we make is that each final consumer has a utility function that is quadratic O
in the consumption variables and that he chooses his consumption vector by maximizing his utility !
X function subject to his budget constraint. This specific functional form may be viewed as a second- «:.
X order global approximation to whatever may be his true utility function. I:
) x4
Assumption 1. Individual j in period t has a utility function U?(X), measuring the value j R
, attaches to having a consumption vector X, which can be represented by a general quadratic !
! function of the form :'
-
U3 (X) = 2(M?S7)' X — (X)'M?(X) + Constant, (1.1.0) b
~
where vector §7 > 0 and matrix M7 is symmetric and positive definite, hence non-singular. A ‘_
Without loss of generality, we may rescale the matrices M? so that, letting ' = (1,1,...,1), b
their inverses H” have the property .
! . . . . ok
fHie=) Y Hi(k,t)=1, H'=(M’)". (1.1.1) ‘
k¢ v
>
Letting Constant; = —(87)' M7 S7, -
: UI(X) = —(S7 - X)'M?(S? — X) <0, forall S/ — X #0. (1.1.2) ko
It is easy to see U7 (X) in (1.1.2) is unconditionally maximized when X = S7. Therefore, it is natural
to assume that S is strictly positive and to refer to S7 as the “satiation” vector of individual 5. We e
¥ i
o
6 |
- :
’
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view the income I of an individual as an “authorization” to exper up to that amount for actual
consumption. Should it happen that an individual’s budget I > p'S?, he maximizes his utility by
buying his satiation vector S7. The unexpended amount I — p'S7, in this case, is not used.

Form of the individual demand function. The budget constraint and nonnegativity constraint
for individual j in period t at fixed prices p are:

PX<I, X>0, p>0. (1.2.0)

Subject to (1.2.0), 5 maximizes his utility function U7(X). The vector X which maximizes U7 (X))
subject to a budget constraint is denoted by X7. This is a special case of a quadratic programming
problem [3]. We distinguish three cases: The high income case, the standard case that defines
the range of income of interest, and the low income case. In the high income case, I > p'S’ and
individual j maximizes his utility by buying his satiation vector, i.e., X’ = S7. Otherwise, the
budget constraint is tight and the procedure begins by forming a Lagrangian and setting its partials

to zero,

a[U* (X) — 2A(p’' X)]/0X =0, (1.3.0)

which is then solved to determine X7 as a function of \; the expression for X7 as a vector function
of A is then substituted into (1.2.0) with the budget tight and solved for A. If X7 > 0, then this
is the standard case. The low case occurs, by definition, when the budget 7 < I7 is so low that j
maximizes his utility on the boundary of the non-negative orthant X > 0 by setting to zero one or

more components of X.

We will loosely refer to the income levels between I* = max I} and I** = min p'S? as the
range of income of interest. It is the range of income for consumption in which no individual j
maximizes his utility on the boundary of the orthant X > O or has sufficient income to buy his
satiation vector S7. This range depends on the prices p. We think of this range as very broad, I*
representing extreme poverty and /** as being very rich. In the context of the full model (Part
IV), it is possible to have all individuals receive at least a minimum fixed consumption vector, so
that X7(k) = 0 should not be interpreted as j going without food, for example. Income, in this
context, means income for purchases above this floor.

For the “standard” case, we substitute the quadratic expression for U?(X) given by (1.1.0)
into (1.3.0) and differentiate partially:

MI(§7 ~-X)=x.p. (1.4.0)

Solving for $7 — X7:
87— X! =X-Hip, where H? = (M?)~1. (1.5.0)

Note that the inverses H? = (M?)~?! exist and are also symmetric and positive definite. We can

now use the tight budget constraint to determine A. Multiplying (1.5.0) by p’ or the left and
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setting p’ X7 = I, we can solve for A and substitute back into (1.5.0). This yields (1.6.0) below, the
demand function of individual j as a function of prices and income I where ), equal to the term in
parentheses, is positive if the budget I is less than the income p’S? required to buy the satiation
vector S?. Note p’H’p > 0 follows from H7 being positive definite. It is easy to see that (1.6.0)
satisfies two properties of demand functions which hold when the budget constraint is tight: (a)

p'X? = I and (b), X’ remains invariant if we rescale prices p and income I proportionally.

Theorem 1.1. The demand function of individual j, for fixed prices p, is a piecewise linear function
of consumption income I. (i) For a range that includes the “range of income of interest”, the demand
function is given by

] 1 p'SJ ~1 y » . ]
8 -X! = (—W)H"p, Ij < IS Ij =pSJ . (1.6.0)
(i) For I < I3, one or more components X7(k) =0. As I — 0, X7 — 0. (iii) For I > I* = p'S7,
the budget constraint is slack and X7 = S7 for all I > I}*.

Proof. The theorem is a restatement of a well known result from quadratic programming. We
therefore omit details and sketch only important steps in the proof. The Kuhn-Tucker conditions
for testing whether X = X(I) is optimum consists in partitioning the inequalities generated by
taking partial derivatives into a set {1 that are tight under the current solution and 1, those
that are not. These are in 1 — 1 correspondence with components Xz > 0 and Xz = 0. Call
the corresponding index sets k also 1 and ). Suppose for two income levels I = a and I = 3
the corresponding index sets {1 are the same for the two optimum solutions. Then the convex
combination X = AX(a)+ pX(B), I = Aa+ uf, is optimal for all A+ p =1, (A, p) > 0. It follows
that X is linear in I over segments where ] sets are the same, there being at most one segment for
each such 1. For other 2 there may be only one I. The former are the broken line segments and
the latter are the values of I corresponding to the break points. Since the number of different 1 is
finite, there are a finite number of breakpoints and broken line segments.

Expected Demand Function for Individuals at the Same Income Level. Our next step is
to derive the functional form of the Engel curves, namely the average demand for some item k& for
all individuals with the same income level I as a function of I and prices p. For this purpose, as
we already noted, we assume that the utility functions which people have are independent of the
particular income which they happen to have. Suppose there are n; individuals j at income level I.
We need to have a way to assign the parameters (S7, HY) to their utility functions independent of
their income I, next find X” = X which maximizes their utility subject to their budget constraint
I, and then average X’ to compute the average demand vector as a function of I and fixed prices

p.
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Population Urn. We can achieve this independence of income by selecting in the parameter

| SRR

space (S, H) a representative set of n possible points (S*, H*) and writing them as labels on n

4

balls, s = (1,...,n), and placing the balls in an imaginary urn which we call the population urn. In
making a random drawing with replacement from the urn, we assume each (S*, H*) is equally likely

to be drawn and assigned to individual j. If it is desired to make it more likely to choose certain

(S*, H*), this could be done by weighing the distribution of (S*, H*) in the urn or by replication &
of certain of the balls. For convenience we have made this distribution discrete and n finite, but a p
general probability measure cou'd be used instead. v
Assumption 2, the Population Urn Assumption. The utility function which individual ::: "
j happens to have, is uncorrelated with I, his personal income for consumption. We achieve i
this by assigning to j a utility function with parameters (S7,H?) = (S°, H') where (S*, H*) is Ny
randomly drawn with replacement from an “urn”; we also assume the distribution in the urn of :::::
the “satiation-level” parameters S* is independent of the distribution of the price “cross- effect” :~
parameters H* = (M*)™1. 2urd
For any of the n; individuals j, with income I, we denote their expected S7 and X7 by !“
£S7 = §' and £ X7 = X! respectively. Our assumption that the distribution of utility functions \.‘(
does not depend on I implies that this expected S’ is the same for all I and therefore S = § E"
where S is the arithmetic mean of the S* in the population urn. Q'&
»

A special symbol £;S* is used to denote the arithmetic mean of S* in the population urn. It <3

R
M)

has the same value as the expected value of a singie random drawing of §* from the population

.
T

urn. Likewise, we denote the arithmetic mean of any function ¢(S*,H*) for { = 1,...,n in the
population urn by £;¢(S*, H') = (1/n) 37 ¥(S¥, H'). For the n; individuals 5 that have an income
I in the range of income of interest, max I = I* < I < I** = min I}*, we know that (1.6.0) holds

E T
.l A‘ A
&AL

no matter what (S*, H') has been assigned to j from the urn. Therefore taking the expectation of
(1.6.0) we obtain (1.7.1) below.

'.‘5 .‘-_‘r,

Theorem 1.2. For fixed prices p = p, and for all individuals j whose income level I satisfies
max I} = I* <1< I*"* =minp'S* for (S*, H') in the population urn, their expected consumption

[y

vector X! is a linear function of I:

SISO RV RAAI I

x

1 1

S‘—X"—‘ $ 'Si —_— p — | — " . ::'
&(p )[p,H.pH]p I&[p,H,pHm, (1.7.1)
~ 1 ) - } [ )
= (ps - I)f.'[-—-..—-H‘]p y S = E;S' . (1.7.2) NS
pH'p N
s
\ »
g . \‘
Proof. Our assumption that the parameters (S7, H?) assigned for individual j is chosen by a ‘\_',’.
random drawing from the population urn independent of income I means, for fixed prices, that the |.
expected values of the terms of (1.6.0) are those of (1.7.1); in particular the factor multiplying I
in the second term does not depend on I. Therefore (1.7.1), at fixed prices, states that the Engel N oy
y
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curves which express each component k of X! as a function of I are linear in I at fixed prices in

the range /* < I < I**. Our additional assumption about the independence of the distributions of

Si

and H® in the urn implies (1.7.2) because

E(p'S )= H'lp = &' )6 5= Hlp = (p'S){f—H‘]p- | (1.7.3)

lHl IH| ' 'H‘

We denote the difference between the expected demand at incomes pS and pS — 1 by

G(p) = ‘Ip (1.8.0)

¢z

It follows that the difference between the expected demand at saturation incomes p’S and [ is
J - G(p), where J = pS — I is the additional income required to reach an income sufficient to buy
the satiation vector. Substituting (1.8.0) into (1.7.2), a more complete statement of Theorem 1.2

is

Theorem 1.3. For fixed prices p = pq, then (i), for all individuals j whose income level [ is in the

range of income of interest, their expected consumption vector X' is a linear function of I:
S-X=(p'S-1)-G(p), where maxI’=1I"<I<I" =minp'S". (1.9.0)

(ii) .is I decreases below I*, it is more and more likely individuals j with this income will maximize
their utility by setting components of X7 to zero and £ X? = X! — 0. (iii) As I increases beyond
I** = minp'S*, it is more and more likely individuals j will maximize their utility by buying their
satiation vectors and £ X7 = X! will level off to S.

Com ent. In Part V, we will present the empirical data of average consumption as a function
of income level for eight broad consumer categories Food, Clothing, Housing, Household Operation,
Transportation, Recreation, Personal Care, and All Other. We will see that the form of these
Engel Curves is generally consistent with this theoretical result that the expected demand vector
of individuals with same consumption income I is a linear function of I over the “range of income

of practical interest,” namely max I < I < minp'S".

Per capita demand as a function of per capita income. Assuming fixed prices in period ¢,
the expected per capita demand function is derived from the expected demand of persons at various
income levels by a convolution with the income distribution. Let X?(k) = Ci(I) be the expected
personal consumption per year of item k by individuals at the same income level I. Let ¢(I) be
the income distribution. The per capita consumption of item k and corresponding expected per

capita income per year are given by

X(k) = w¢>(1)-Ck(I)dI, (1.10.1)
=0
I= m (1) - 1dI, (1.10.2)
I=0
10
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where X(k) denotes component k of X. The symbol for expected per capita consumption vector
X is to be distinguished from X! which is the expected consumption vector of individuals 5 whose
income level is I. It would appear that the correspondence between X and I depends on the
distribution of ¢; in fact it does not for a broad range of I.

Theorem 1.4. If Cix(I) is a linear function of I, then independent of the distribution of income
#(I), X(k) = Cx(I), i.e., expected per capita consumption of item k is a linear function of per
capita income I and this linear function is Ci(I).

Proof. Let Cx(I) = a + bI. Substituting into (1.10.1) and noting [ ¢(I)dI = 1, yields X (k) =
a+bl= Ck(I). [ |

Comment. The hypothesis that Cix(I) is a linear function of I is only true by Theorems 1.2 and
1.3, for a restricted range of income which we have referred to as the “broad” range of income of
interest, max I} = I* < I < I** = minpS"* for (S*, H') in the population urn. Let us assume
the distribution of income for consumption in the population is above the extreme poverty level
I* = max I} and below being very rich, I** = minpS*. As time goes by, per capita income I will
change (and likely increase) and the distribution of income ¢(I) about I will change. As long as
people at the same income level at the same prices buy in the same way in the future and the
income distribution change is not so drastic that some j have income I below their I; or above
their pS?, Theorem 1.4 states that X (k) is the same linear function of I as X’ (k) is of I for some
range I* < I < I**. Therefore, we have established:

Theorem 1.5. For fixed prices p = p,, (i) expected per capita consumption X is a linear function
of per capita income I for a certain range of income I; namely:

S-X=@S-1)-G(p), rr<i<r:, (1.11.1)

where G(p) = H(p) - p and H(p) = £;(p'H'p)~* - H' is a symmetric positive-definite matrix whose
elements depend on p and not on 1.

(ii) If I < I*, then it is more and more likely that some individual’s income I < I;, and these
7 will maximize their utility by setting some components of X’ to zero; as I — 0, X — 0. (iii)
If I > I**, then it is more and more likely that some individual’s income I > p'S?; these j will
maximize their utility by buying their satiation vectors S7; for sufficiently high I, X will level off
to S.

Note especially that our predicted result of linearity does not depend on the shape of the
income distribution or how this changes as per capita income I increases in the future providing it
does not rise so high that some j have income I such tht p’S? < I or decreases so low that some
I3 > I. Implicit, of course, is the assumption that tastes don’t change with time. If they do, there
is no problem adjusting the model for trends in taste.
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The empirical studies of Avrie! and McAllister [2], based on special assumptions about how
income distribution will change relative to I in the future are consistent with the results we have
just derived without their special assumptions.

N
b
N
N

e
BN

SRAAANLOULR

o]

o

X Sy r " Y ‘ » - <o WY
A AR AN s K S S, AN 0 Y 3%, . o R DR TN O DO I T



o
M
o
B
PART II: o
NECESSARY AND SUFFICIENT CONDITION FOR INTEGRALITY 2
OF THE EXPECTED PER-CAPITA DEMAND FUNCTION t.,r
Our immediate objective is to derive a necessary and sufficient condition that an inverse ex-
pected per capita demand function and utility function exist for period t when the expected demand Py,
function given by (1.11.1). The condition for existence is closely related to one given by Slutsky, 2
see Varian [19]. Our proof is specific to the demand function given by (1.11.1). It is therefore as- ‘
sumed in the discussion that follows that per capita income is in the “range of income of interest” .\
I <I<Iv ot
. -
Definition of a Utility Function. In order for U(X) to qualify as a per capita utility function, .::',:
we let v =S — X and require Z(v) = —U(X) to be a convex function twice differentiable (except :
possibly at v = 0) which attains a minimum subject to a budget constraint p’ X = I, or equivalently :’::
p'v=J, where J = p'S — I, at a unique finite point v = v*. Therefore v* is a function of p and J "
which we denote by S — X = v(p,J) and call the latter the demand function associated with the M’-‘
utility function U(X). 2
Conversely, if we are given a demand function § — X = v(p, J), such as ::‘?:E
S-X=v=J-E(p'H'p)™"-H'p where J=p'S~1T, (2.1.0) 7,
' >
we inquire if there exists a utility function with which the demand function is associated. If yes, ‘:f
we say that the demand function is integrable. % q
We will, however, restrict the utility functions considered from now on to those homogeneous : -
in v of degree +1. To conform with this definition, we redefine the utility function (1.1.2) for an :-"'
individual to be U’(X) = ~{(S7 — X)’M?(S7 — X)]'/2. We call a function a per capita utility '
function, U(X) = —Z(v), v= 8§ — X, if (i) Z(v) is twice differentiable for all v (except possibly )
at v = 0); (ii) Z(v) is a homogeneous function in v of degree 1 along every ray, i.e., Z(av) = aZ(v) y
for all v, a > 0; (iii) Z(v) is strictly convex between any two points v! # v? satisfying the budget :n::
constraint p'v = 1: ':::*
| %
AZ(v') + pZ(v?) > Z(Av' + uv?) forall (A>0, u>0, A+u=1); (2.2.0) *
and (iv) Z(v) > O for all v # 0. .
We first show that Z(v) under the second definition qualifies as a utility function under the first ::‘; '
definition. We then seek a necessary and sufficient condition that U(X) exists when the demand Eﬁ
function is given by (2.1.0). The diagram on the next page outlines the logical dependence of the »
various theorems upon one another which yield or are implied by this condition. ',:
My
o
o
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Special Definition of a Utility Function

Theorem 2.1 on properties
of Z(v) =-U(x)

GIVEN é(v) exists
/AN
Theorems 2.2 & 2.3 ' Theorem 2.9

Inverse demand
function exists

(Theorems 2.4 - 2.6
on existence
and nonexistence.)

Necessity, Theorem 2.7 Sufficiency, Theorem 2.8
WV

ov
? 2.,\2
q——ap,q+(q v)°>0

forall g#a-p

Theorem 2.1. min Z(v) subject to p'v = 1 is attained at a finite point v = v* and is unique.
Denoting v(p,1) = v*, the expected per capita demand function associated with Z(v) is § - X =
v(p,J) = J - v(p,1) where J = (pS - I).

Proof. Assume on the contrary that inf Z(v) is not attained at any finite poirt. In this case, there
exists a strictly decreasing sequence
Z(v') > Z(v?) > .- > Z(v*) > ... > inf Z(v) (2.3.0)

such that Z(v*) — inf Z(v) > 0 as [[v*|| — 400, and such that p'v* = 1 for all t. A subsequence
can be chosen, so that normalized vectors v*/||vt|| — v®, where v® # 0 and Z(v°) > 0. For this

subsequence, due to homogeneity of Z(v),
Z(v*) = o)l Z(v*/||o*])) = 1v*]) - Z2(v°) = +oo, (2.3.1)
contradicting that Z(v*) is a strictly decreasing subsequence.
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Therefore Z(v) attains its minimum at either a unique finite point v* or attains it at least
two finite points v! # v3. Now v! and v? cannot be on the same ray and both satisfy the budget
constraint p’v = 1. If not on the same ray, then by (2.2.0), any convex combination of Av! + pv?
satisfies the budget constraint and yields a lower Z(v), contradicting Z(v!) = Z(v?) are minimum

values.

To prove v(p, J) = J-v(p, 1), following the same proof as above, we know that min Z(v) subject
to a budget constraint p'v = J or (p’/J)v = 1 is attained at a unique point, v¢ = v(p,J). Let
v! = v(p,1) and assume on the contrary:

Z(J - v}) = JZ(v}) > Z(v*) = JZ(v*/T) (2.3.2)
implying that v*/J, which satisfies pv = 1, maps into Z(v*/J) < Z(v') a contradiction. |

We defined p, as fixed period t prices. Let p be a rescaled price vector that maps into v by the
relation: v = G(p). We have the following definitions and relations:

S-X=v=G(p), (2.4.0)
G(p) = &(P'H'p)™ - H'p (2.4.1)

H(p) = &(p'Hip) ™t - HY (2.4.2)
pv=1 forall p#0. (2.4.3)

Two lemmas about G(p) and H(p):

Lemma 2.1. Elements (k, £) of the matrix H(p) = &;(p’' H'p)~'-H* are homogeneous functions of p
of degree —2; H(p) is square, symmetric, positive definite, moreover p’[H(p)lp = p'G(p) =p'v =1
for all p # 0.

Proof. By definition, element (k,£) of H(p) is &:(p'H'p) 1 H}, and is equal to element (¢,k)
since Hi, = H},. It is positive definite because the assumed positive definiteness of H* im-
plies ¢'[H(p)lg = &(p'H'p)Y(¢'H’q) > O for all p # 0, ¢ # 0. In particular p'[H(p)lp =
E(p'Hp) Y (pPHp)=1. 8
Lemma 2.2. The elements of the vector v = G(p) = H(p)p = £i(p'H'p)~" - H'p are homogeneous
functions of degree —1. The matrix dv/dp’ is square and symmetric.
Proof. We define element (k, £) of 9v/dp’ as dvx/dpe where vy is k-th component of v and p, the
£-th component of p. From (2.4.0), (2.4.1):

w=_E&(p'H'p)™ -Hip, (2.5.0)

where H} denotes the k-th row of H*. Clearly vy is a homogeneous function in p of degree —1.
Taking partials,

9% _ g Hy, _(Hpp)(p'H, + Hftp)] _ Ove (2.5.1)
dpe  ‘'PHp (¢ H'p)? AP -
15
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where the ¢-th column HY, = (H})' and H}, = H}, because H* is symmetric. i

Theorem 2.2. The unique v that minimizes Z(v) subject to the budget constraint p'v = 1 satisfies
the first-order condition:
1 92

E . -5;‘ =p. (2.6.0)

Conversely, given any v = v*, there exists a unique p such that min Z subject to p'v = 1 is attained

at v*, namely:

lycys =P (2.6.1)

Proof. . Forming the Lagrangian Z(v) — A(p’v) and setting its partial derivates to zero, we obtain
dZ/dv = A - p where ) is chosen so that p'v = 1. Applying Euler’s Theorem for homogeneous
functions to Z(v) of degree +1:

Z= v'(%—f—) =v'(Ap) = A(v'p)= A, (2.6.2)

whence (2.6.0). Conversely, given v = v*, the p defined by (2.6.1) satisfies v'p = v'(82/3v)/Z =
Z/Z = 1 by Euler’s Theorem. Suppose now for p given by (2.6.1) that min Z(v) subject to p'v = 11is
attained at some other v = v¥ # v* satisfying (2.6.0). Then since Z(v) is convex and differentiable,
both v® and v* satisfy necessary and sufficient conditions (2.6.0) to be global minima points,
contradicting uniqueness established in Theorem 2.1.

Theorem 2.3. A necessary condition for the existence of a utility function U(X) = —Z(v), asso-
ciated with the demand function

§-X=J-Glp), J=pS-1I, (2.7.0)

is that the inverse function of v = G(p), exists, namely,

p=G'1(v)=%%€-, pPv=1, v=S8-X. (2.7.1)
Proof. If v = G(p), then by (2.4.3) p’v = 1 for all p. If a utility function U(X) = —Z(v) exists
associated with the demand function (2.7.0), then minimizing Z(v) subject to p'v = 1 satisfies
(2.6.0). Since Z is a function of v, (2.7.1) states that p can be expressed as a function of v when
p'v = 1. Hence a necessary condition for the existence of a utility function is that v = G(p) have
an inverse function p =G~ 1(v). 8

Comment. There are two ways that the function v = G(p) can fail to have an inverse. The first
is: given v, there exists no p that satisfies the equation v = G(p). The second way is: given a
particular v, there is more than one p satisfying the equation. We will prove that first way can
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never happen and the second way can. However, under certain conditions that we will specify later,

there is a unique solution for all choices of v # 0.

Theorem 2.4. Given any v # 0, there are always one or more p # O satisfying

v=G(p)=E&(p'H'p)™ -H'p, v#0. (2.8.0)

Proof. Let s = (1,...,n) and let 2= {X; : ; > 0, 37 A\; = 1} be the n — 1 dimensional simplex.
We now define a continuous mapping A — p € £2: Choose any A € 3; let H = 31 AiH*; determine
p=nH lv. Note that H is positive definite because it is a convex combination of positive definite
matrices H'; hence H~! exists; hence p can be computed. Next, form j; = (§'H*$)"* > 0 for
each ¢ and set pu; = f5;/ Y 7 fix. It is not difficult to show that the mapping A — u is continuous.
According to Brouwer’s Theorem, a fixed point A — A° exists. For this A\° = u determine

p=nH"lv  where H=SI\H", (2.8.1)
pi = = (p'H'p) ST H'P) (2.8.2)
nv=Hp=3SP\H'p (2.8.3)

= [ST('H'p) ! - H'pl/E3 (P H'p) ™

v=(1/n)S3 (o' H'p)"! - H'p = G(p) . (2.8.4)

where p = p- ZF(5' H'p)~?, whence (2.8.0). 1
Theorem 2.5. Given certain v and certain H*, it is possible there exist more than one p satisfying

v = G(p), implying G~ (v) does not exist in general.

Proof. Let n = 2 where § = 1,...,n and let m = 2 where matrices H* are m x m. Let

,_ (20 -6 , (02 -8 _ (05
" = (—.6 0.2)’ H'={_6 20)" "= \os (290)
In the case of n = 2 and m = 2, it is not difficult to show that there are three different p
satisfying v = (1/2) 33 (p' H'p)~!-H'p generated by three different choices of A9 and corresponding
A3 =1 - 19, see (2.8.1) and (2.8.2). One of these three values of A can be real and the other two

conjugate pairs, a + 8v/—1, or all three can be real. For the special case (2.9.0), there are three
real solutions:

p=(1,1), p= (48382, 1.51618), p= (1.51618, .48382).

Since these solutions satisfy v = G(p), all three satisfy pv=1. §
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Theorem 2.8. For some choices of H*, v = G(p) has an inverse p = G~ (v).
Proof. Assume H' = H for all 5. It is easy to verify that a p which satisfies (2.10.0) is given by
(2.10.1):

v=(p'Hp) 'Hp . (2.10.0)
p=(WH ) 1. A, (2.10.1)

The RHS of (2.10.1) is G~1(v) because, as we will now prove, this solution is unique: Assume, on
the contrary, p # p also satisfies (2.10.0):

v=('Hp) ' Hp . (2.10.2)
Substituting this expression for v into (2.10.1), we obtain p = j, a contradiction. 1§
When v = G(p) has an inverse p = G~1(v), we will make use of the following lemmas.

Lemma 2.3. v = G(p) and p = G~*(v) are homogeneous functions of degrees p = —1 and
1/p = —1 in p and v respectively.

Lemma 2.4. If the matrix dv/dp’ is non-singular at p, then its inverse dp/dv’ exists.
Proof. dv/dv = identity = [dv/3p’] - [0p/8v'] from the theory of implicit functions. N
Lemma 2.5. The matrix dp/dv' is symmetric.

Proof. This follows from Lemmas 2.2 and 24. 1@

Lemma 2.6.
v=—[3v/dplp; o' =-p'|0v/3p']; (2.11.0)

p=—[3p/d8v')v; p' = -v'[ap/3V']. (2.11.1)

Proof. The first part of the Lemma follows from Euler’s Theorem for homogeneous forms of degree
—1, see Lemma 2.3, and the second part follows from the first part and symmetry, see Lemma 2.5.

|
Lemma 2.7. s
) OV IR
P 6p‘p+ (P'v)* =0 (2.12.0)

Proof. By (2.11.0), the first term is —p'v and p'v = 1 by (2.4.3). §
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Theorem 2.7. Given v = G(p), a necessary condition that a disutility function Z(v) exists is

q gp,q+(qv)2>0 forall g# ap, p#0. (2.12.1)

Proof. By definition of a utility function, its correpsonding disutility function satisfies Z(v) > 0
for all v # 0 and 32Z/8v? is a positive semi-definite matrix such that:

,0%2Z 9%z
v Froade o, u’-aju >0, forall u#av. (2.12.2)

We have shown by (2.7.1):
=(8Z/dv)/Z . (2.12.3)

At any v # 0, OJp/dv' exists since dp/dv' = (1/2)3%Z/8v? ~ (1/2Z)*(8Z/3v)? and
Z(v) # 0. From 3%Z/8v? = 8[0Z/8v]/3v’ and (2.12.3):

8°Z _ dp az _dp ,
357 = 3o P35 = 30 Z+(pp') -2 (2.12.4)
=2Z. [ +pp] (2.12.5)

By (2.5.1), the inverse of dp/dv’, namely dv/dp’, also exists, at any point v # 0, p # 0. Therefore,
for u # av, we can find a ¢ satisfying

dv
u—gp—,q, g#a-p. (2.12.6)

Z(v), by assumption, is strictly convex except along rays. We therefore require

2
°<"%é“—z[“ Put(u'p)?] forall uav, v#0, (2.12.7)
a
=Z[q ap,¢1+(¢lv)°’] forall g#a-p, p#0, (2.12.8)

by (2.12.6). Whence (2.12.1) since Z >0. |}

Theorem 2.8. A sufficient condition that the inverse function p = G~!(v) exists when
v=G(p) = &(pH'p)™ - H'p is

gp,q+(qv)’>0 forall ¢, q#a-p, p#0. (2.13.0)

Proof. We first show that the function W (p), defined by

logW(p) = j&ilog(p’Hp), p#0, (2.13.1)
19
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under the hypothesis (2.13.0), is (a) convex; (b) W(p) > 0 for p # 0; (c) its Hessian 8°W /3p?,
is strictly positive definite for all directions ¢ # a - p; and finally, (d) p’(32W/dp?)p = 0. Clearly
W(p) > 0. The first partial is:

1 oW _ ) oy i
w g = GWHP) T Hp, (2.13.2)
ow
ik G(p) - (2.13.3)
Letting v = G(p), 8W /3p = Wv. Applying (2.13.3), the second partial is:
3w
¥ W[(ap’) +v-9], (2.13.4)
2w
Ilgzle=Wld ( )q +(q'v)*) >0, (2.13.5)

by hypothesis (2.13.0) and W > 0. Finally, if we replace ¢ by p in (2.13.5), then by Euler’s Theorem,

p'(3v/3p')p = p'(—v) = —1 and (p'v)? = +1, whence
82W
P ?

Conditions (2.13.5) and (2.13.6), and W > 0 imply that 8°W /3p? given by (2.13.4) is positive

semi-definite.

=0. ~ (2.13.6)

We now use the properties of W(p) to show for any given v there exists a unique p such that
v = G(p). Suppose not true and for some given v # 0, there exists two vectors p = p and p = p
such that v = G(p) is satisfied. Consider now the problem of

minW(p)  subject to v'p=1, (2.14.0)
where v is given and p is variable. Since W (p) is convex, we find its minimum at some p = p* by

setting the partials of the Lagrangian W (p) — A(v’p) to zero obtaining
P

aw
3p

where A = W because W = p'(dW/dp) = p’(Av) = A(p'v) = A. Equation (2.13.3) and (2.13.1)
together expresses W /dp in terms of p while (2.14.1) places a condition on p to qualify as a

=dv=Wy, (2.14.1)

minimizing p*. Equating (2.14.1) with (2.13.3), we see that p* satisfies v = &;(p' H'p)~! - H'p, and
therefore p* = p and p* = p are both optimal.

But minimizing of a convex function W(p) subject to linear constraint v'p = 1 can only have
global minima. Therefore, W (5) and W (p) are both global minima and W () = W(p). Vectors p
and p cannot lie on same ray and both satisfy the budget constraint (2.14.0). Therefore, by (2.13.5),
in the direction ¢ = p— p from p to p, (p — p)’'[8°W /3p|(p — p) > Ofor all p=Ap+pup, A+pu=
1, (A,p) > 0. Because of strict convexity along this segment, W (p) < W (p) = W(p) holds; also
7'v=p'v=pv=1holds, contradicting p and p both being minimizing points. 1
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Theorem 2.9. A necessary and sufficient condition that there exists a utility function
U(X) = ~Z(v), v= 8§ — X, associated with the expected per capita demand function § — X =
('S — Dé&;(p'Hp) ™ - H'p for period t is

9'%q+(q'v)2 >0, forall g#a-p, p#0. (2.15.0)
The function Z(v) is the mapping v — Z defined by the following procedure:

Step 1. Find the unique p satisfying

v=E,(p'H'p)™ - H'p (2.15.1)
Step 2. For any fixed scalar 4 > 0, find Z satisfying

logyZ = —1&log(v H'p), >0, (2.15.2)

Proof. Necessity of (2.15.0) has already been demonstrated. Therefore we assume (2.15.0) is true;
by Theorem 2.8, p = G1(v) exists, hence p of (2.15.1) is unique. Our objective is to show that
Z (v) =49Z(v), v > 0, is a disutility function associated with v = G(p). To qualify by our definition
as a disutility function, we must show properties A, B, C, D, E below:

A. Z(v) > 0 for all v # 0. This follows by rewriting (2.15.2),

Z=|[(p'H'p)-(p'H’p)-+- (' H"p)|"*/*" >0, forall p#£0. (2.15.3)

B. Z (v) is homogeneous in v of degree = 1. Proof: Note v is homogeneous in p of degree —1 by
(2.15.1) and Zis homogeneous in p of degree —1 by (2.15.3), implying Zis homogeneous in v of
degree 1.

C. Minimizing Z(v) subject to the budget p’v = 1 implies the demand function v = G(p). Proof:
According to Theorem 2.3, the inverse demand function associated with minimizing Z (v) subject
topv=1is R

192

5o = (2.15.4)
where the left hand side is viewed as a function of v. We must therefore verify in the case when
v = G(p) and Z is defined by (2.15.1) and (2.15.2) that the left hand side of (2.15.4) is indeed

G~1(v). From (2.15.2):

lgz _ dlog 2 _ (=1/2)8[¢; log(p’ H'p)] 9p
Zov  Bv ar [a”'] (2153)
= _[E(o Hip) Y« Higl! . (22
= (e ) - [2)
dp
= —v’ . (—37] = p' (2156)
21
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where dp/dv' refers to the functional relation between p and v implied by v = G(p) and where ;'
the last step follows from Euler’s Theorem for homogeneous forms, see (2.11.0). Therefore, the p )
generated by (2.15.4) is the same one that is related to v by v = G(p). "
()
D. The function Z(v) is convex. Proof: Following the steps of Theorem 2.7, ]
. 0
822 v l‘.
'—u 2 =— 0. 15.7 -
v Z[qap,q+(qu)]>0 u=gyds (Fop, p# (2.15.7)
. . u
According to our hypothesis (2.15.0) and Z > 0 by (2.15.3), the Hessian [32Z/3v?] is strictly )
positive definite in the direction of any two points not on the same ray. Note {2.12.0) holds along ..E
a ray.
’
E. General Z(v) = ~2 (v) where 7y > 0 is a scalar constant. Proof: By Theorem 2.3 and (2.15.4), "
both general Z(v) and Z(v) satisfy v
\
N 0
10Z 1972 _ ",
Integrating :_
logZ =logZ +1logy, >0 (2.15.9) k¢
whence Z = v- Z. From now on we will assume 4=1and Z = Z. 1 ;."'
Theorem 2.10. A necessary and sufficient condition that there exists a utility function U(X) = .
—Z(v), v=58 — X, associated with the expected per capita demand function S ~ X = (p'S ~ I) - <
&i(p'Hip)™! - H'p for period t is :
Y
¢H'q _(@HPpP . ¢HP b
& — — - + [&s———=1*">0. 2.16.0 ty
s 2t (2169) 3
0,
for all p# 0, q # ap. E
Proof. Substituting into (2.15.0), v = &(p'H'p)~! - H'p. Noting (2.5.1), '
‘A
dv H' H'p o' H* o
—_— 5' - 2.16.1 s
o~ Sl T pE (2361) D
form which we obtain (2.16.0). § \
E '
'
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PART III:
TWO SUFFICIENT CONDITIONS FOR INTEGRABILITY

Having found a necessary and sufficient condition that a per capita utility function exists,

namely

¢H'q  (¢H'p)? ¢ H'py2
£ = -2 - + (€ .
; [#H'p (P'H‘P)z] [.~ PH'p
holds for all p # 0, ¢ # a - p, we now seek conditions on H* in the population urn that guarantee

>0 (3.1.0)

this. We prove two important theorems which show that the distribution of H* in the population
urn would have to be highly polarized as in the example of Theorem 2.5 in order for condition
(3.1.0) to fail. It is not difficult to show if H; = H for all 1 that (3.1.0) holds. Let H be any
positive definite matrix, for example H = £; H* where X H}, = 1. One measure of how much H*
differs from H is to form H* = H~Y2H'A~1/2 and compare H* to I, the identity matrix. The
eigenvalues of I are all unity and the ratio of its hightest to lowest eigenvalues is unity. Therefore,

we can study how much the ratio of the highest to lowest eigenvalues of H* has to differ from unity
before condition (3.1.0) is violated.

Indeed we will show in Theorem 3.4 that this ratio would have to be greater than 3 + /8 for
each ¢ in order for condition (3.1.0) to fail. But even this will not cause failure when the axes

of various ellipsoids pH*p = constant are randomly rotated to some extent with respect to each

other; if the rotations are uniformly distributed (or nearly so) in R", then we will show in Theorem

3.5 that regardless of what the ratio of highest to lowest eigenvalues of H* are, condition (3.1.0)

will hold. In other words the distribution of the price- cross effect matrices H* would have to be

exceptionally highly skewed for a per capita utility function to fail to exist.

Theorem 3.1. Let H be any positive definite matrix and let H* = H~Y/2H'H~1/2 then the
necessary and sufficient condition that a utility function exists is equivalent to finding conditions
on H® so that for allp# 0 and q# ap:

¢Hq _(¢H'p)
PH'p (¢ H'p)?

FET

&l

|+ [e‘Z:f?:Z]Z >0. (3.1.1)

()

Proof. The matrix A'/? is not unique. There is a way to choose it so that H!/2 is symmetric,
namely #'/2 = ED'/3E' where E is the matrix of eigenvectors of H and D is the diagonal matrix

1™ T

whose diagonal is the eigenvalues of H. For properties of E see proof of Theorem 3.3. Substituting

p= H"Y%p, q = A Y%§ into (3.1.0) and then relabeling ($,§) as (p,q) in order not to have

E 3 »
[AS

proliferation of symbols we obt:in (3.1.1). §

Comment. If H* are all close to H = £;H*, then H* will be close to & H* = I, the identity. If
H* = I for all 4, condition (3.1.1) reduces to showing p?q® — (p’q)®> > Oforall p#0, ¢ £ 0,p # ag

where p?,¢? denotes p'p, ¢'p respectively. But the latter is always true because it is the same as

p?¢®sin? § where 0 is the angle between vectors p and q.
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Theorem 3.2. The necessary and sufficient condition (3.1.1) that a utility function exists is equiv-
alent to finding conditions on H* so that for all §#0, §#0, F#§=0:

gy (7H'p)’
PHp (7H'P)?

7H'p

& =
| ZE

]+ [&

?>o0, 7§=0. (3.1.2)

Proof. The only difference between (3.1.1) and (3.1.2) is the requirement that § be orthogonal to
p. Because of homogeneity of (3.1.1) we can rescale p and ¢ so that p? = 1 and ¢> = 1. Let 6 be the
angle between p and ¢ so that p’g = cos#. Note that the sign of the L.H.S. of (3.1.1) is the same
if we replace ¢ by —g¢ so that we need only consider 0 < # < x. Therefore, the condition ¢ # ap
translates into sin § 3 0. We replace variables (p,q) in (3.1.1) by p, ¢, and 8 where

p=p, ¢q=gsinf + pcosh, cosf = p'q where sinfd #0. (3.1.3)
It is easy to prove when p? = 1,¢% = 1 that
p7=0, =1, p=1. (3.1.4)

Substitute (3.1.3) into (3.1.1). After much cancellation of terms and factoring out of the common
factor sin? § > 0, we obtain (3.1.2). Because (3.1.2) is homogeneous in § and ¢, we no longer require
52 1 a2 —

Comment. The last bracket expression of (3.1.2) is not likely to contribute much to the positivity
of the L.H.S. For example, if H = {;H® and all H* = £ H* = I, the identity, the last term would
vanish because p'§ = 0. Therefore, if we drop the second bracket, it is sufficient to only consider
conditions on H* that guarantee that the first bracket expression is positive. As an extremum or
worst case scenario, we will look for conditions on H* that will guarantee for every ¢ that t;, the
corresponding pair of sth terms in the first bracket, is positive:

(§H'Q( H'p) - 2(7 H'p)?
(7 H'p)?

To simplify the discussion, we assume all the eigenvalues of H* are distinct. If not they could be

made so by a slight perturbation of H°®.

t; =

>0 forall 32#0, 3 #0 .ichthat p'g=0. (3.1.5)

Theorem 3.3, a sufficient condition. A utility function exists if for each s:

_9Dg _,(¢'Dp)?
#Dp "~ (¢ Dp)?

t; >0 forall p'g=0,p>=1,¢°=1 (3.2.0)

where D = D* is the diagonal matrix whose diagonal elements are dy < --- < d',, the m distinct
eigenvalues of H*.
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Proof. All the eigenvalues of the positive-definite matrix H* are positive. Let these be d} > 0.
To simplify the notation we will write di = d} and denote their corresponding eigenvectors by
E: - E; rescaled so that (Ex)? = 1. Then by definition

BE.=di-]-E; EEB*=4d,-E,- I, (k) =1,...,m (3.2.1)

where I denotes the identity matrix. Therefore F{H'Ey = d - E}- Ex = d;- E}, - Ey. Since dy # d,
for all £ # F, it follows that E,Ex = 0. Therefore the matrix of eigenvectors £ = (Ey, E»,...,Ep)

is an orthoncinal matrix, i.e., E'E = I, and

ERFE=D. (3.2.2)

Substituting § = Eq, § = Ep into (3.1.5) and rescaling so that p? = 1, ¢* = 1, p'q¢ = 0 we
obtain (3.2.0).

Theorem 3.4. A utility function exists if .. r every { the diagonal matrix D = D* of eigenvalues
of H* hce the jroperty mint; > 0 where

_qlpi = 1)?

ti=1
' (pi +1)?

>0, (3.3.0)

where p; is the ratio of the highest to lowest eigenvalues of H*, or equivalently when

pi <3+2/2=583 £ 3.1)

Proof. Condition (3.3.1) follows by rewriting (3.3.0) as (—p? + 6p — 1)/(p + 1)? and determining
the range of p where y = —p? +6p—1 > 0. To prove (3.3.0), we minimize ¢; given by (3.2.0) subject
to p? =1, ¢> =1, p’q = 0. For the p,q that yields this minimum, let

PDp=a>0 and ¢'Dg=8>0, p'q=0. (3.3.2)

Under the conditions p’ Dp = a and ¢’ Dg = 8, minimizing ¢; reduces to
max(q' Dp)? subject to (3.3.2) . (3.3.3)
From the properties at the maximum, we will derive a relationship between p’ Dp and p?, and ¢' Dq

and ¢ that will allow us to minimize ¢; subject to p’g =0, p? =1, ¢% =1, see (3.2.0).

Fact. ¢’ Dp # 0 at the maximum. Proof: We assumed diagonal D satisfies 0 < d; < --+ < d,,,.
Given a > 0 and 8 > 0, it is easy to find p and ¢ satisfying (3.3.2) and ¢’ Dp # 0. Therefore, because
everything is bounded and continuous, 8 maximum exists with (¢’ Dp)? > 0. We can now form the
Lagrangian

L = (¢'Dp)* — A(p' Dp) - (¢’ Dg) - 2v(p'q) (3-34)
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and set dL/3p = 0 and dL/3q = 0O, obtaining
(¢Dp)-Dg=A-Dp+vq, (3.3.5)

(¢'Dp)-Dp=n-Dp+vp, (3.3.6)

Fact: v # 0. Proof: Since ¢'Dp # 0, it follows v # 0 because v = 0 would imply by (3.3.5)
that p and ¢ are proportional and p’q # 0, contrary to hypothesis.

Fact: A > 0, u > 0. This can be seen by multiplying (3.3.5) and (3.3.6) by p and g respectively:
(¢ Dp)® = ra=pp. (3.3.7)

Multiplying (3.3.5) and (3.3.6) by ¢ and p respectively:

(¢'Dp)B = A(¢'Dp) + vg* = (¢'Dp)*/a + vg? (3.3.8)
(¢'Dp)a = p(q' Dp) + vp* = (¢'Dp)*/B + vp* . (3.3.9)
Hence
(¢'Dp)ap = (¢’ Dp)® + avg® (3.4.0)
(¢ Dp)ap = (¢'Dp)® + Bvp® (3.4.1)
implying
(p*/a) = (¢°/B) and a=p when p? =¢*=1. (3.4.2)

We now rewrite (3.3.5) and (3.3.6)

(¢ Dp)- D -vIlg=ADp (3.4.3)
[(¢'Dp)- D~ vIlp=pDq (3.4.4)

where I is the identity matrix. Solving (3.3.7) for A and (3.3.8) for v and substituting into (3.4.3):

{(¢Dp) D~ 5 [aple'0p) - (¢DpY*] - T}e = LL2L . pp, (343)

and an analogous expression if we solve (3.3.7) for u and (3.3.9) for v and substitute into (3.4.4).
We can now factor out (¢’ Dp) # O, obtaining (3.4.6), and by analogy (3.4.7):

{ag’D ~ [aB - (¢’ Dp)*]I}q = ¢*(¢'Dp) - Dp (3.4.6)
{8p°D — [af - (¢'Dp)*] 1} p = p*(¢'Dp) - Dq (3.4.7)

where the expression in brackets, are the same in (3.4.6) and (3.4.7) since ag? = 8p?. Noting that
the product of diagonal matrices is commutative, multiply (3.4.7) by ¢?(¢’ Dp)D and interchange
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: on the L.H.S. the order of ¢2(¢'Dp)D and the bracket term; finally substituting L.H.S. of (3.4.6) f
! for q(¢' Dp) - Dp, we obtain

{ag’D - [aB — (¢ Dp)*|I}?q = p?¢*(¢' Dp)® D?q . (3.5.0)

TR T
S - -

Expanding and rearranging terms and noting (ag?)? = p?¢%ap:

[*¢*{aB ~ (¢'Dp)*} D ~ 2(ag®){af - (¢ Dp)*}D ~ {aB ~ (¢'Dp)*}* Ilg=0. (3.5.1) \

We observe that the common factor {8 — (¢’ Dp)3} # O by (3.4.0) or {3.4.1) and the fact that
v # 0. Therefore factoring out {8 — (¢’ Dp)?} # O from (3.5.1), we obtain (3.5.2) and an analogous '
expression, (3.5.3) after noting ag? = Bp®:

PO . 3

)
o [p*q* D? ~ 2(aq®) D — (af — (¢Dp)*)I]g =0, (35.2)
) J
' [P*¢>D? ~ 2(ag®)D ~ (e — (¢Dp)*)lp = 0. (3.5.3) '_
' Vector relation (3.5.2) holds for each component g of g. Since ¢ # 0, one or more components
:c gr # 0. Let g5 # O for some k, then for this k: '
'
. (r°¢°)d} - 2(aq”)di — [aB ~ (¢'Dp)’] = 0. (3.5.4)
: Let y = (p?¢®)z? — 2(ag®)z — [af ~ (¢ Dp)?] be a parabola expressing y as a function of z. Now
_ y = 0 can only hold for at most two values of z = di, i.e., for say k = 1 and k = m. And from :
;‘ (3 only the same k = 1 and k = m can possibly have p, # 0, the case of only one k being N
rule sut because say k = 1 only, then both p; # 0,¢; # 0; and all other p; = 0,¢; = 0. But this .
o contradicts p’'q = 0. Representing these two components of p and ¢ in polar coordinates and noting :
" p'g=0:
9 \
,,; p1 = +||p||cosd, pm = +||p||sind, and p; =0 for 1<i<m, (3.6.0)
X g1 = —||ql|sin 8, gm = +||q|lcosd, and ¢; =0 for 1<i<m, (3.6.1)
D ]
b subject to p'Dp = a, ¢ Dq = B, p'q = 0. Therefore \
! a = p'Dp = p?[d1 cos? 8 + d, 8in? 0) (3.6.2) /
. B = ¢'Dq = ¢*|d, sin® 8 + d,,, cos? 6] . (3.6.3) :
1 >
. Whence, noting p? /a = ¢/8, by (3.4.2), ':
' . .
d; cos? 8 + dyy, sin® @ = d; sin? § + d,, cos? 8, (3.6.4)
s
y (dm — dy)[cos® 0 —sin? 0] =0, (3.6.5) ;
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and therefore since d,, # d;,

cos®f =1, sin®@=141, (3.6.6)
a=pldi+dml/2, B =¢[d+dm]/2, (3.6.7)
FRY
(9D)* = ¢ in? Do o(d — )2 = =L (36.8)
Recalling a = 8 from (3.4.2),
_B_,oBldm —d)? _ [ _o(dm —di)?
= a"zm— 1 2(dm+d1)2 (3.6.9)

We left open the question, which pair of the distinct eigenvalues d; < d3 < --- < d,,, to select; we
show now that the best choice for min¢; is in fact the ones we chose, namely d; and d,,,. Let 7 > ¢
and y = (d; -- &;)/(d; + d;), then dy/dd; = 2d;/(d; + d;)? > 0 and 3y/dd; = —2d;/(d; + d;)? < 0.
Therefore the ratio increases as d; — d,, and also as d; — d;. Hence the lowest ¢; is obtained for
t=1and 5 =m.

From (3.6.0) and (3.6.1), optimal p; = cos(x/4), pm = sin(x/4), and p; =0 for 1 < § < m; and

also q; = —sin(x/4), ¢ = cos(x/4), and ¢; = 0 for 1 < ¢ < m. Therefore the minimal solution to
(3.2.0) is
., (dm — d1)?
min ¢; = [1 2(dm T ) (3.7.0)
Let p = dp/d; be the ratio of the highest to lowest eigenvalue, then
; (p—1)? 2 2
ti=1-2 =(- 6p—1 1 3.71
min e = (P T8 -1/l+1) (3.7.1)

which is positive for all p in the range

(3+2v2) 1 <p<3+2/2=583. (3.7.2)

Comment. In order for a utility function to exist it is sufficient that £;¢; > 0. Therefore the
condition that mint; > O for each ¢ is a worse case scenario that is far too stringent. We know for
case of a population of two people that it is possible for ;¢; < 0, and this is true even if the term
(£:(¢'H'p)/(p' H'p))? is added to t;, see counter example of Theorem 2.5. In a large population
such as U.S. we would expect the set of representative ellipsoids p’ *p = constant in the urn which
can be rotated into one another to have to some extent randomly distributed orientations of their
axes. If we rotate all such ellipsoids to H* for the lowest ¢, say H, the effect is to rotate the p and
q to a random position. Therefore, we need to consider for each such H, the average or expected

value of 'y g
qiaq qiap
f(p9) = &pq oHp ~ 2(p_'11_p)2 , =1, =1, p¢=0, (3.7.3)
28
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where p and ¢ are “randomly” distributed in some way. We, of course, do not know what is the
true distribution of orientations of the axes of the ellipsoids p’ H'p = constant that can be rotated
into one another. We will prove a theorem when these orientations are uniformly distributed about
the origin in R™. While this assumption of “uniformly distributed” is not realistic, the purpose of
Theorem 3.5 is to illustrate that the more the orientations vary relative to one another, the higher
the bound p < 3 + 2v/2 + A can be where A — +oo.

Theorem 3.5. If the orientations of the axes of the ellipsoids p' H'p = constant that can be
rotated into any particular H* = H are uniformly distributed (or nearly so), then &, 4f(p,q) > 0
where f(p, q) is defined by (3.7.3); moreover £;t; > 0, implying that the expected per capita utility
function exists.

Proof. The proof consists in partitioning the set

S(pa)={p.alp* =1, ¢* =1, p'g=0} (3.8.0)

of all admissible (p,¢q) into equally probable subsets T(R), each subset obtained from T'(I) by a
general rotation R in R™. We will show that each T(R) has the property, that the average value
of f(p,q) found by integration over T(R) is unity. It then follows that the integration of f(p,q)
over S(p,q) will also be unity. As noted one of the subsets T'(R) is the set T(I) which is defined
to be the set of all p = (cos ¢,8in¢,0,...,0)' and § = (- sin¢,co8$,0,...,0)' for 0 < ¢ < 2x.

This “reduces” the subproblem to considering, in place of H,#,§, the truncated matrix and
vectors:
H= [gi; ;II;:] , P=(cose,sing), §=(—sing,cos¢). (3.8.1)
Let the matrix of eigenvectors of H be £ so that EAE = D. The diagonal matrix whose elements
are the eigenvalues of H, namely D(i,1) = d; > 0 and D(2,2) = d; > 0. The matrix £ is
orthonormal, hence we can rotate § and § in R? space by p = Ep and § = Ej and ¢ = 0 +a so that
the axes of the ellipsoid p’ H p = constant are parallel to the coordinate axes. After this rotation,
our problem reduces to showing for T'(I):

Z‘/"'/z [d, 8in? 8 + dj cos? 9 _2(d9—d1)2sin20c0820
xJo

di=1. 3.8.2
dy cos3 8 + d sin® 9 [d1 cos? 6 + dy sin? 63 ( )

where p = (cos8,sin8),§ = (—sin8,cosd). Note we claim that relation (3.8.2) holds independent
of what the diagonal elements of D happen to be.

We will prove (3.8.2) in a moment. We can obtain the subset T(R), by rotating the subset
T(I) by a general rotation R~! about the origin in R™ space. Conversely we can rotate T'(k) into
T(I) by p= Rp, ¢ = R7, where R is an orthonormal matrix. The effect is to replace H by R'HR
and carry out the integration over T'(I) with respect to R’ H R, instead of H, again obtaining unity.
Since each rotation R is equally probable, this means &, ,f(p, q) = 1 for (p,q) € S(p, q).
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We now show (3.8.2) is true. Substituting z = coe? 8 + psin® 0, and letting d; = pd;, and
Q =-p+(p+ 1)z — 22, (3.8.2) reduces to proving

p+1-z Q3
/[2,@1/2 ) ]d""

_E[p-i-l/"' dz _l/" dr _/"Ql/zdz]_
T axt 2 1 2QY2 2 [, Q2 1 z2 -

Denoting a + bz + ¢2? = Q = —p + (p + 1)z — 22 and noting (b% — 4ac)/2 = p ~ 1, we obtain from

(3.8.3)

a table of standard integrals:

/" dr 1 in-1 bz + 2a
1 zQ1/3 - (- )1/2 z(b? - 4“)1/2
1 _1((p+ l)x—-2p) £

PR G e

/"’ dz 1 . —1f —2z-b )
2 Q7T 9\ a7
_ ,
=sin"? (______2:: (s 1)) =x

-1 =1

3:1

’lelzdz:,- Q1/2 4 b/- /‘P dz
, T Ql/2 Ql/2

+11r
=o+” () == (3.8.6)

Substituting these evaluations into (3.8.3), yields &, , f(p,q) = 1, implying &it; = 1 > 0, which

is sufficient for the expected per capita utility function to exist. §

In this part we explored how close the price cross-effect matrices H* must be to a typical H to
guarantee integrability. One measure of closeness is the ratio p; of the highest to lowest eigenvalues
of A = A~Y/3g A-1/3, 1t is sufficient if p; < 3 + 2v/2 for all i. Another measure is how spread
out is the distribution of orientations of the axes of the ellipsoids p’ H'p = constant;, the more
evenly spread the better. We found that the bound on p; is higher the more the tilts of the axes of
the ellipsoids p’ H'p = constant; are uniformly distributed relative to one another. On the other
hand, if individuals ¢ in the population tend to be highly polarized as to their consumption tastes,

as in the example of Theorem 2.5 with p; = p; = 91 a per capita utility function may not exist.
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PART IV:
INTEGRALITY OF THE MULTIPLE-PERIOD EQUILIBRIOM MODEL

In Part III we established that the expected per capita for period ¢ over the income range of
interest is integrable when the ratio p; of highest to lowest eigenvalue of H* is less than 3 + /8
for all 5, or less than a higher bound for p; if the axes of ellipsoids p'H*p = const. are randomly
disposed to one another. From now on we assume that a utility function for each period exists, and
consequently an inverse demand function exists except for a scale factor to be determined. This
does not mean, however, in the context of a time-staged model for the whole economy, that there
exists an objective function which, when maximized subject to physical flow constraints, implies the
additional equilibrium conditions involving prices that must hold between the producer /investor
and final consumer. It depends on how the numeraire for prices in the rate-of-return formulas are
defined. It turns out that when the numeraire for normalizing prices is suitably defined, a concave
objective function for the economy exists.

Aggregate quantities corresponding to per capita quantities are denoted by bold face letters
X¢,S¢,1;, Uy, Z;. They are obtained from X,, S;, I, U;, Z; by multiplying by P,, the size of popu-
lation in period t.

The mathematical formulation of the multi-period model is along the classical lines of an
Arrow-Debreu [1,5] or Scarf [17] equilibrium model, with no surprises except perhaps for the inter-
pretation of the profitability constraints of investors as rate-of-return formulae for selecting among
different investment possibilities. A typical production/investment activity j in period ¢ has a
column consisting of three sets of fixed coefficients [B:(5), —A¢(7), — De(5)]’ per unit level of activ-
ity where B,(j) is the input/output vector of capacities, resources, and flows of all items (goods)
needed for production and capacity formation in period ¢ except final consumer items; A,(j) is
the output/input vector of final consumer items in period ¢; and D,(7) is the output vector of
capacities, resources, and intermediate goods left over or produced in period t for period t+ 1. The
model is then defined by five sets of relations numbered (4.1.0) through (4.5.0). The first two we
refer to as the primal or physical flow constraints

In (4.1.0) below, Y, > O is the vector of aggregate production and investment levels to be
determined in period t. In words, (4.1.0) states that the capacity, resources, intermediate items
B, Y, required for production and capacity formation at levels Y, cannot exceed the amount of
these items D¢_1Y,_; left over or produced by period t — 1 activities for period t plus the vector
k. of these items exogenously supplied: '

B Y¢ < Dy 1Yy + ks ; corresp. dual oy >0. (4.1.0)

The vector of dual prices corresponding to (4.1.0) is denoted by o¢ > 0, and the slack vector which
turns (4.1.0) into an equation is denoted by 6; > 0. According to the theory of Arrow-Debreu,
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production levels Y, and prices o, will adjust until at equilibrium the complementary slackness

conditions é;0¢ = 0 hold.

In (4.2.0) below, X, > 0 is the vector of aggregate final consumption in period ¢t measured in
physical units. In words, (4.2.0) states that consumption cannot exceed A;Y, the net output from
production after investment less, f;, any fixed demand (like government plus any minimum floor
provided to the final consumer and not paid for by income for consumption):

—AYe+ X < ~fe; corresp. dual =7, >0. (4.2.0)

The corresponding vector of normalized discounted dual prices is denoted by x; > 0, and the slack
vector which turns (4.2.0) into an equation is denoted by #; > 0. At equilibrium #{x¢ = 0.

Dual Constraints: We assume that a numeraire has been selected in each period relative to which
prices for various goods are measured. If so we say the prices # are “normalized”. Prices oy > 0
and x, > O for the dual constraints are defined to be discounted period t prices; moreover = is
defined to be discounted normalized period t prices. Thus x, = &'~ &, where the discount factor
is 6t~ and &, is the vector of normalized prices. The vector of unnormalized period t prices of final
consumer items is denoted by p;. We have no need for a symbol for prices on capacity, reserves,
and intermediate goods relative to unnormalized prices p; but prices on these items relative to

normalized prices #; are denoted by &;.

Relation (4.3.0) below, which we will derive in the comment, states that investors must receive
at least their minimum rate of return r = §~! — 1 or they won’t invest:

—Bjo, + Ayxy < —Djog+y ; corresp. primal Y, >0. (4.3.0)

The slack vector which turns (4.3.0) into an equation is denoted by ¥, > 0. It is in 1 to 1
correspondence with primal variables Y¢ > 0. At equilibrium Y:Yt =0.

Comment: Typically, the rate-of-return formula for a producer/investor j in period t is formed
by “pricing-out” the input-output vector of physical flows per unit level of investment activity j,
namely [B,(5), — A:(5), — De(5))’, and then looking for a discount factor § so that the discounted

cash flows is zero:
—5-15,B,(§) + 8 1R A(§) + 8%y, De(5) = 0. (4.3.1)

Note the use of normalized prices %; (and &, relative to #;), and not unnormalized prices p;. This
makes the rate-of-return formula inflation free meaning that the investor decides what his minimum
rate of return r should be without multiplying it by some factor for future inflation. It is assumed
that an investment must have a rate of return not less than a minimum rate r, or ad’ >unt factor
§ < 6§ = (1+r)"!. This implies that investors will not consider investment opportunity j if its
§ > 5. On the other hand if its § < §, the investment is profitable and the level Y;(5) will tend in
the “real world” to increase indefinitely. This puts pressure on capacities and resources that are in
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short supply, thus forcing prices and & up, until at “equilibrium” §=2 = 1 + r. We express these
conditions by defining ¥,(t) > O by

~8"15;B,(5) + 8% A(J) + 65,1 D:(5) + Ye(5) =0 (4.3.2)

and requiring V() - Y.(§) = 0. Substituting §*~15; = oy, 8% = =, 8'Fe41 = O¢4y and
dropping the slack vector ¥ (j) > 0, this relation is the same as (4.3.0). End of comment.

In (4.4.0) below, F¢(X,) is the inverse of the expected aggregate demand function which we
assume now exists except for a scale factor to be determined that generates normalized period ¢
prices #; required by the rate-of- return formula (4.3.0):

-7+ 6 1FR(X) <0; corresp. primal X, >0. (4.4.0)

The corresponding set of primal variables is X; > 0. When X, > 0, which is usually the case, this
relation becomes an equation. The slack vector that turns (4.4.0) into an equation is denoted by
5[, > 0. At equilibrium X;X, = 0. The case when the inverse demand function does not exist will
be commented on in a moment.

The Complementary Slackness Conditions are that all variables be nonnegative and

6loy =0, #x =0, Y!¥.=0, X/X,=0. (4.5.0)

The model has t = 1,2,...,T periods. For period t = 1, the term DgY) is omitted in relation
4.1.0). For period t = T, the term —o/._ D/ is omitted in relation (4.3.0).
T+1T

This completes the mathematical statement of the time-staged model. The remainder of Part
IV is concerned with deriving the functional form of the inverse aggregate demand function F(X,),
and the utility function U(X,,...,X) for the full economy when it exists. Before doing so we note
that if the economy were driven by a utility function of the form U = £6*~1U,(X,), the Kuhn-
Tucker conditions derived by maximizing U subject to primal physical-flow conditions (4.1.0) and
(4.2.0) would give rise to conditions (4.3.0), (4.4.0) and (4.5.0) where F,(X,) = 9U,/dX,, see
reference [12]. If the latter conditions hold for all t we say the vector functions F¢(X;) in the
context of the full model are integrable. If not, we say the model is non- integrable and no utility
function for the economy exists.

The dynamic equilibrium problem is well defined even for the case that the inverse demand
function for each period does not exist. In place of (4.4.0), we could state (a) the direct aggregate
demand function (4.6.0) below replacing I; by ;X,, and (b) the condition prices must satisfy when
they are normalized and discounted. It is outside the scope of this paper to discuss whether or not
an equilibrium solution might exist in this case.
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Value of Endowments

Since the aggregate demand function expresses consumption X, = P, - X, as a function of
aggregate income I; = P; - I, and prices, we reexpress Theorem 1.5:

Sg - X¢ = (x;S, - I‘)g(ﬂ':Hiﬁ'g)_l . H‘ﬂ't ) })g . I: < It < IJ¢ . I—:‘ s (460)
t

where P, is total size of the population in period ¢, S, = P, - §;, and x, = §*" 1%, are discounted
normalized period t prices %;; aggregate income I, is redefined to be aggregate income measured
in terms of x, instead of p;. Before we place F;(X,), the inverse of this demand function, into the
model, we must first relate its I, to the value of endowments. This is important because the model
does not provide any detail about who owns the endowments and therefore no detail about how
rents, wages, dividends, royalties, interest on loans, taxes, government doles, etc., get transferred to
the final consumers for consumption. We therefore need to be assured that the model nevertheless
implicitly provides a mechanism whereby the total value of endowments used for consumption are

in fact transferred.

Theorem 4.1. The value of endowments I, used to produce consumption X, in period t is exactly
equal to n;X,, the attained level of aggregate income used for consumption in period t.

Proof. In terms of the prices of the model, the value of endowments available to period t is
04(D¢—1Ye—1 + ke). If we subtract off the value used for fixed consumption «; f;, less 0}, , D, Y
the value passed down to period t + 1, the net by definition is I;:

I¢ = Gz(Dt—ch-—l + kt) bl ﬂ’:fg - U:+1 Dng (461)
= a‘Bth - 0:+1 Dng - ﬂ:ft (462)
= I:(Ang had fg) (463)

where (4.6.2) follows from (4.1.0) and (4.5.0), and (4.6.3) follows from (4.3.0) and (4.5.0). Therefore
by (4.2.0) and (4.5.0):
It = w:Xt . [ | (464)

Thus, independent of the choice of the demand function, the primal conditions (4.1.0), (4.2.0),
the profitability conditions (4.3.0) and the complementarity conditions (4.5.0) imply that I, = m; X,
holds.

Equivalent Concave Program

Having given the conditions that an expected per capita utility function and inverse of the
expected per capita demand function exist, we now assume these exist and set aggregate X, =
P X, 8¢ = PS8, U, = P,U,, I, = P, - I, where P, is the size of the population in period t. Let

p=G !(v) where v=25, - X, (4.7.0)
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It follows from (2.15.3), after rescaling —U;(X,) = Z for population size,
Ui(Xe) = —P, - Gi(p' Hip) /2 (4.7.1)

where §; denotes geometric mean of (p' H'p)~1/3 for H*, i = (1,...,n), ia the population urn.

Theorem 4.2. The equilibrium problem is equivalent to solving the concave program

T
max U(X) = Y 61U (Xe) (4.8.0)
t=1
subject to (X¢,Y:) > 0 and the primal flow conditionst=1,...,T:
B.Y, < Do Yy + ke (4.8.1)
~AY, +X, < fe (4.8.2)

providing (i) the primal problem is feasible, (ii) the geometric mean of (p, H'p¢)'/2 fort = 1,2,...,n
is used as a numeraire for normalizing prices p,, and (iii) the aggregate income I, = x{X,; associated
with the optimal solution satisfies P, - I* <1, < P, - I**, and (iv) X; > 0. Under these conditions
an equilibrium solution exists.

Proof. The condition that I, is bounded between certain lower and upper limits is our way of
saying that the demand function of all individuals j is of the form S9 — X7 = (xS7 — I)(x'H’x)" .
H7x, which would not be the case if their budgets I were extremely low or extremely high. The
equilibrium problem obviously has no solution if the primal problem is infeasible. Here in Part
IV, we assume conditions of Theorem 3.3 hold so that a utility function for each period exists. By
definition of a utility function, U,(X,) are homogeneous functions of degree 1 in v = S; — X, which
are strictly concave in v except along rays with v = 0 as origin. The concave program under these
conditions has a finite optimal solution. The Kuhn-Tucker conditions for optimality turn out to be
the same as the dual constraints of the equilibrium problem, (4.3.0), (4.4.0), and (4.5.0).

If X; > 0, then in the equilibrium medel, by (2.7.1) and (2.15.3):

%o = Fo(Xe) = 0U, /80X, (4.9.0)
=0Z[fdv=1Z-p (49.1)
= p/Gi(p' H'p)'/? (4.9.2)
= pe/ Gi(pL H'pe)'/? . (4.9.3)

The denominator §;(p}H*p;)!/ may be viewed as a numeraire for normalizing period ¢ prices p;.

Therefore if a feasible solution to the primal exists, an optimal feasible solution exists that
satisfies the Kuhn-Tucker optimality conditions, which is the same as saying an equilibrium solution
exists. The strict concavity implies that the values of X, and x, are unique; those of Y, and o,
need not be unique. fi

Comment. The above way of normalizing p is different from the conventional one p/&p where
& = (1/m---1/m) and m is the number of components in the vector p. Later on we will present
evidence why this way of normalizing p; is just as satisfactory if not superior.
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Theorem 4.3. The existence of a utility function U(X) depends on how the numeraire for period
t prices used by the investor/producers in the rate-of-return formulas is defined.

Proof. It is sufficient to demonstrate this when H* = H for all {. In this case G(x¢) = (v} Hx ) *-
Hx, and the expected aggregate demand function (4.6.0) simplifies to:

v=_8 - X, = (xS, — L)(x{Hx,)" - Hnx, . (4.10.0)
Dropping the income factor and rescaling x; as p, then for this special case:

v=(p'Hp)~' - Hp, (4.11.1)

p=(vVMv)"! . Mv, where M=H ', (4.11.2)

By (4.7.1) and (4.9.2), ~U; simplifies in this case to

-0y =2 = (p'Hp) /% = (VMv)'/? (4.11.3)
= (S - Xe) M(S. - X'/ (4.11.4)

By (4.9.0), (4.9.1), (4.11.3) and (4.11.2), = simplifies to
x=6"1x =612 p=6"TMv/(v'Mv)'/? (4.11.5)

It is easy to show
(" HAx)1/? =1. (4.11.6)

and therefore the implied numeraire for normalizing prices is (p, Hp;)!/2.

Because I, = x}X,, the right-hand side of (4.10.0) is a homogeneous function in x of degree
0, implying that the inverse demand function F;(X.), that expresses x, in terms of X, = P, - X,
while not unique, can be determined uniquely except for a scale factor. Note in Theorem 4.2
we choose one particular way, see (4.9.3). When X, > 0, relation (4.4.0) becomes an equation
xe = 87 1F,(X,) where F;(X;) = # is defined to be normalized period t prices. We therefore
must choose the proportionality factor so that F;(X;) automatically generates normalized prices of
period t before discounting.

The numeraire for normalizing prices, however, can be chosen in more than one way. If investors
calculate their rate of return based on period t prices p, normalized by #, = p,/(p} Hp)*/?, for the
special case H* = H for all 1, then for this per capita demand function simplification (4.10.0), the
inverse per capita demand function as we have shown can be stated explicitly and is proportional
to M(S, — X,) or M(S,; —X,), see (4.11.2). Under this definition of normalization, F;(X,) satisfies
for X, > 0, M= H?

1
[(Se - X, )'M(S, - X,]!/?

Fg(XQ) = ° M(Sg - Xg), (4120)
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which is the same as (4.11.5) before discounting. Note in this case, # Hx = 1 for all # = F,(X,)
since | Fe (X¢)' H F¢(X,]'/? = 1 for all X,. This way of normalizing F;(X.) does depend on the scaling
of M and we therefore would like the scaling of M to be such that base-year prices po = (1,...,1)
remain the same before and after normalization. This is why earlier, we required H to satisfy
1=phHpo =3 3 30 Hie, see (1.1.1).

On the other hand, if investors calculate their rate of return based on the vector of prices p,
normalized within each period so that their average price is unity, i.e. normalized by #; = p;/&'p,
where & = (1/m,...,1/m), then the scale factor must be chosen so that normalized prices satisfy
&% = 1. F(X¢) under this definition of normalization satisfies for the special case H* = H for all

i N

1
eM(S: — X,)
Note & F;(X,) = 1 for all X;. Moreover under this definition, F;(X,) does not depend on the
scaling of M. Also when the physical units for categories k are chosen so that base year prices

Ft(X¢) = . M(Sg - Xt), for X¢ >0 y M= H—l. (4130)

po =e=(1,...,1), they remain unchanged when we normalize in this way.

For the H estimated by Hu Hui from empirical data [10] and Tabulated in Table 1, the normal-
ized prices #; = p;/(p} Hp:)'/? had average values &#, for years t from 1961 to 1982 which differed
only slightly from 1, see the last column of Table 4, so that the investor would be indifferent as to
whether the denominator of (4.12.0) or (4.13.0) were used for numeraire.

We need only show that a utility function does not exist for this special case of the equilibrium
problem when prices are normalized by #; = p¢/ép, and F;(X.) is defined by (4.13.0). Consider
a two perivd model so that we are maximizing the utility U(X) = U;(X;) + §U,(X;) subject to
the primal constraints (4.1.0) and (4.2.0). Further suppose X; has only two components so that
X = (X11,Xy2). Let 8; = (811,812), 81— X1 = (S11 — X11,812 — Xy2). Let 73 = (711, 712)
and M = [m,;] be a 2 x 2 symmetric positive definite matrix. Let 8; — X; = V = (V;,V,) where

Vl = Sll - Xn, Vz = S12 - Xn. (4.14.0)

At a maximum the Kuhn-Tucker conditions dU; /X, = 7, should hold, see [12]. From (4.13.0),
x = MV /D where the denominator D = &MV = Z(mi: + miz)V1 + 2(mi2 + m2)Va. Therefore,
the following should hold:

dU1/0X11 = m11 = (mu Vi + m12V2)/0, (4.15.1)
dU,1/8X12 = 713 = (m12V)1 + maaV2) /0. (4.15.2)

In order for a utility function to exist, the second partial
0%U;/0X,,0X;2 = —9%U,; /0X,,8V;
computed from (4.15.1) should agree with
3%U,/0X,20X,; = —8%U,/8X,,8Vy
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computed from (4.15.2) for all choices of X;;,X;;. Setting these second partials equal to each
other, we should have
miz | (muVi + miaVa)(my2 + ma3)(1/2)
"D T D2

myz | (migVi + maaVh)(myy + mig)(1/2)

e
D D2

which reduces to (myyma; — m3,)(Vi — V2)/D? = 0. But this does not hold for all choices
of (X;1,X;2) because M being positive definite implies m;3miz — m2, > 0 and (V1 — V2) =
(S11 — X41) — (S12 — Xi2) # O for general, X, a contradiction. 1

(4.15.3)

Our proof of non-existence of an objective function when prices are normalized in the conven-
tional way is only valid for two or more periods. In a one period case, the factor &p normalizing
prices in the rate of return formula can be factored out and replaced by (p'H p)}/2. The new
problem is then equivalent to the original problem but in its new form a utility function exists.
However, in the multiperiod case, it is not possible to factor out &p, and replace it by (p} Hp,)!/?
without invalidating the rate-of-return relation (4.3.0).

Comment.

This ends the theoretical derivation of an objective function for the economy. We conclude that
the economy will grow if it has the resources and technology to grow and if it pays according to
the aggregate “utility” function to trade off movement of the consumption vector X; towards the
“satiation” vector S, of earlier periods t for considerably larger movements towards the satiation

vectors of later periods.

Recalling v = §; - X, X¢ = P;- Xy, S¢ = P, - 5, and I, = P,I; where P, is population size, we
have by Euler’s Theorem for a general homogenous utility function of degree 1:

-Uy=PR-Z=P-(8Z/3V')v (4.16.0)
= I)g . 77,0 = IJ‘ . (f"s-'g - I_t) (4161)
=mS: -1, . (4.16.2)

Thus the disutility is the sum of the discounted additional aggregate income (measured in normal-
ized period t prices) needed to purchase the “satiation” vector over various periods t where the less
additional income required the higher the “standard of living”.

Ideally normalized prices & should have the property that a unit amount of income should enable
each individual j to purchase at prices # goods X7 whose utility to j is unity. In a certain geometric
mean sense this is true if #; are prices p; normalized by the numeraire GeometricMean;(p. H ‘pt)l/ 2,
For a representative set of individuals 1 with utility functions U§(S*, H*) for {5*, H*) in the urn
and income I, let —Uj = [(S* — X*)' M*(S* — X*)]!/2 be the negative utility of optimal X* tos. It
is easy to prove

Ui = JY (% H'7,)"Y/? (4.17.0)

- g o

S
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where J* = %/S* — I' is the additional income § requires to reach satiation. Letting §; denote
geoemtric mean, it follows that the G;(~Uf)/ Gi(J*) is unity since G;(¥|H'%¢)'/? is unity when
Gi(pe H'p:)'/? is used as numeraire.
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PART V:
SIMPLIFYING AND ESTIMATING THE DEMAND AND UTILITY FUNCTIONS

Simplifying the Form of the Per Capita Demand and Utility Functions.

Our immediate goal is to replace the key factors G(p) = &[(p'H'p)~! - H'p) associated with
the demand function and —2log Z = £; log(p' H'p) associated with the utility function by simpler
expressions whose parameters are easier to estimate and then give reasons why these approximations
may be very good. We will use the symbol = to denote approximately equal.

Note that the demand function (1.6.0) of individual { is invariant to the scaling of H*. Positive
definite matrices H* = H},| satisfy e'H'e = 3., 3, Hi, > O where ¢’ = (1,...,1). Therefore, see
(1.1.1), we have assumed without loss of generality that H* has been rescaled so that

€H'e=) Y Hi,=1 foralli, ¢ =(1,...,1). (5.1.0)
| 2 4

The units for measuring the consumption of goods in “physical” terms are usually defined so that
their base year prices per unit is po = e = (1,...,1)". Therefore pj H*py = 1 for all 1 by (5.1.0),
implying ph Hpo = 1 where we define H = & H*. It is convenient for the simplification that we use
as numeraire (p’ Hp)!/? implying p’ Ap = 1 for all “normalized” vectors p. It follows, in particular,
that po = po/(phHpo)/? = po = e and gy H'po = 1 for all § for the base year.

Theorem 5.1. The first-order approximation of log Z as a function of p = G~*(S, — X,) yields

the approximation:
Z =g (pH'p)™'/* = (' Hp)™"/?, (5.2.0)

where positive definite H* are rescaled so that ¢’ H'e = 1 for all { and H = £;H* and §; denotes

the geometric mean.

Proof. We normalize p by p = p/(p' Hp)'/2. Subtracting log(pHp) from both sides of —2log(Z2),
and letting p = e + A, we obtain

~2log(Z) — log(p' Hp) = &:log|(p' H'p)/ (v’ Hp)| = £:log(p' H'p) (5.3.1)
= & log[(e + A) H' (e + A)) (5.3.2)
= & log(e'H'e + 2A'H'e + A'H'A) (5.3.3)
= & log(1+ 2A'H'e + A'H'A). (5.3.4)

As a first order approximation of a natural log, set log(l + ¢) =¢;.

~2log(Z) - log(p' Ap) = &[(2A'H'e) + (A'H'A)) = 2A'He + AHA (5.4.1)
=(14+2A'He+ AHA)-1=(e+ AYH(e+ A) - 1 (5.4.2)
ép‘ﬁﬁ—l:l—lzo, (5.4.3)
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where ' Hp = 1 was shown in comments following (5.1.0). Therefore, the approximation of Z(p) o

is given by (5.2.0). &

A

Little, of course, is known about the utility functions of individuals or how they vary about H. -'f-

For the experiment we are about to describe, our particular choice of distribution for h; = p'H ‘P, is :

designed to show that the approximations of Z(p) and hence G(p) = —3(log Z)/3p are good ones 3
for variable g in the neighborhood of some fixed po = (1,1,...,)’ = e even if the H* for individuals

1 were to vary a lot. In Table 4, prices p; for the years t = 1961 to 1982 relative to base year 1972 "'

prices py = e, are tabulated. For p in the neighborhood of py = e, the values of h; = p' H*p will ‘:‘

obviously be distributed around the mean p’ Hp = 1 with a very low standard deviation, because ]

phH'po = 1 for all 1. The vector of prices for 1982 differed the most from the base year with some ;

prices differing by more than 30%. Therefore p, for t = 1982 was selected as an extreme case of p; '.c:‘.

for our illustrative example. :l.

The following experiment was then made. The symmetric matrix, denoted H in Table 1, was :‘0

inverted to produce an M and a thousand cases of random M’ were generated by independently :&

varying each symmetric pair M}, about My, by (1 + 8) My, where 6 was binomially distributed !

with mean 0, and standard deviation .1, and maximum range —.2 < § <, 2. Three of the thousand N

P

cases were dropped because M* turned out not to be positive definite. The inverses [M*]|~! = H*
were then computed and H* replaced by rescaled H* so that ¢’ H'e = 1. We will now call H, the g
average of these H* and denote by § = p,/(p, H pe)'/? where p, is the price vector for year 1982.
This makes the mean of pH'p = 1. The standard deviation of H*p for the sample of 997 cases
turned out to be less that .05 or 5%. For our analysis, we exaggerated the standard deviation of +
h; = ' H'p to be 10% instead of 5% and to have a maximum range of 20% about their mean of 1.
If 5% instead of 10% were used in Theorem 5.2 below, the error ¢ would have been negligible.

Theorem 5.2. Let p = p./(p,Hp:). If the distribution of h; = (p’H*p) > O is binomial with =
mean of 1, standard deviation = .1, and a range .8 < j'H'p < 1.2, then the percent error in the *
approximation of Z by (p, Hp,)~1/? is less than 0.5%: :l
—2log(Z) = log|(1 + €)(p'Hp)] where |¢| < 0.5% . (5.5.0) . 3

™

Proof. We seek an error bound for e. From (5.5.0) and (5.2.0), \.

log((1 + ¢)(pt Hpe)] = E:llog(p, H pr)] , (5.6.1) R
log[(1 + €)] = &[log(p’ H'p)] , p=p/(p'Hp)/?, (5.6.2)

P
Our task is to prove |¢] < .005. We assumed that h; = p’ H'jp, roughly speaking, has a truncated ;:'
normal distribution with mean of 1, a standard deviation less than .1, and .8 < h; < 1.2, namely ;:
we assumed it to be the binomial distribution with values (.8, .9, 1.0, 1.1, 1.2) and corresponding ¢
probabilities (1/16,4/16,6/16,4/16,1/16). For this experiment, we therefore have: 4

1 4 6 4 1 f
log(1 = —log 8+ —log. — . — . — . T,
og(l+¢) 16 108 +16103 9+1610g10+lelogll+1610gl2, (5.7.0)
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with an error |¢|] = .00505. We assert without proof that any continuous unimodal distribution
with same mean, standard deviation, and truncation would yield about the same error || < .005.
|

Because log(Z) where Z is the disutility function is so closely approximated by —3 log(p} Hp;)

for reasonable  variability of p,H'p,, we apply the approximation to
—d(log Z)/dp to obtain our approximation for the key factor G(p) of the demand function:

G(p) = &(p'H'p)™ - H'p = —9(log Z)/3p (5.8.1)

= 19d(log(p’Hp))/0p = (p'Hp)™' - Hp  for all pnearpo . (5.8.2)

Hence the approximations:
v=(p'Hp)"' - Hp, p=('Mv)™' My, (5.8.3)
where M = H~! and v = 5, — X;. We now substitute these approximations into various demand
function theorems and summarize them here:
Demand functions of individuals with income I (Theorem 1.1):
S — X3 =(p'S? - I)(p'H'p)~* - H'p (5.9.0)
where IT < I < I* = pS7.
The approximation for Theorem 1.3, the expected demand function of individuals whose income
is I
S-XI=@S§-D&E'Hp) ™ -Hp=(pS-1)(p'Hp)™ ' - Hp (6.10.0)

wheremax I} =I"< I <I*™ = minp'S*, H® rescaled so that ¢ H'e =1 and H = £ H'.

The approximation for Theorem 1.5, the expected per capita demand function:
S-X=0'S-D&W'H'p) - H'p=(p'S- D('Hp)"" - Hp (5.11.0)
where I* < [ < I**,

The approximation for Theorem 2.9, the utility function U, = U(X;) for period t which
implies the per capita demand function (5.11.0) is:

Oe=-Gi(p'H'p)™/? (5.12.1)
= —(p'Hp)~Y/? = —(v'Mv)'/? (5.12.2)
= —[(§ - X)'M(S - X3, (5.12.3)

where M = H~! and §; denotes the geometric mean for H* in the population urn. We now apply
the approximation (5.12.3) to Theorem 3.2, after rescaling for population size.
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Theorem 5.3. The equilibrium problem is approximately equivalent to solving the concave pro-

gram:
max U(X) = - ZS'_I[(Sg - Xg)'Mg(Sg - Xg)]l/a, (5130)
t
subject to (X¢,Y:) > 0 and the primal flow conditionst=1,...,T:
B, Y, < D1 Y1+ ke (5.13.1)
~AY+Xe < fe (5.13.2)

where S;,X,, Y, are aggregate quantities, and M, = H; ', H, = £ H}, and H} have been rescaled
so that 3, -, Hi(k,€) = 1.

EMPIRICAL EVIDENCE OF LINEARITY OF THE DEMAND FUNCTION AT
FIXED PRICES

M. Avriel in his studies {2] convoluted the income distribution with average observed personal
consumption data for over fifty commodities as a function of average observed income per person
at various household income levels. More recently, one of the authors, McAllister, repeated the
same experiment with more recent survey data for certain key commodities. For their studies a
distribution of income for future periods was assumed to be a certain known function of attained
per capita income, namely (a) that Ci(I), the average of consumption of individuals at income
I at fixed prices p of commodity k will not change in the future; (b) that per capita income I
may increase with time; and (c) that the distribution of income about I will retain its same shape
when rescaled proportional to I. The base year distribution was based on survey data. They then
determined per capita consumption as a function of per capita income by the convolution formulas
(1.10.1) and (1.10.2). The resulting per capita demand functions turned out to be remarkably
linear at fixed prices over a wide range of per capita income. See references |9, 2, 21].

Tables 2A and 2B tabulate for survey years 1972-73 and 1980-81 the average consumption of
U.S. per person in various household income classes of Food, Clothing, Housing, Housing Oper-
ations, Transportation, Recreation, Personal Care, and All Other. Each of these 8 categories of
consumption k was plotted against the average income used for consumption per person in each
household income class. See Figures 1 to 8 immediately following Tables 2A and 2B. Before plot-
ting, however, the average consumption per person in dollars in each category was divided by its
survey year price thereby converting the units for measuring the amount of consumption to “phys-
ical” units. In order to exhibit the plots for the two survey years for each category and make them
on the same graph comparable, the average income per person in each household income class for
the 1980-81 survey in 1980$ was deflated to 1972$. Prices used for converting the consumption in
survey year dollars to “physical” units can be found in Table 4. The units for each category k are
chosen so that price in 1972-73 for each k is unity. Prices for other years are deflated to 1972$.

Since the vector of prices in each survey year is fixed, the regression of average consumption

of category k per person in a household income class versus average income per person should be
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linear for “the range of income of interest” according to Theorems 1.2 and 1.3 or its simplified
form for estimating its parameters, (5.10.0). The reader is encouraged to ignore the trend lines on
Figures 1 to 8 (which will be explained later) and to study the sixteen sets of plotted points and
judge for himself how linear they are for these very broad categories of consumption.

Tables 3 and 4 tabulate per capita consumption and prices by category in the years 1961 -
1982. We found the family household data, Tables 2A and 2B, somewhat inconsistent with per
capita data of Table 3 possibly because they came from different types of surveys. It seemed best
to use the graphs of Tables 2A and 2B only for the purpose of extrapolating a guess of §. Using
this guess, the data of Tables 3 and 4 were then used to estimate a positive definite 4.

Estimating S. According to Theorems 1.2 or 1.3, the expected demand function of persons
at various income levels is linear in income up to a level that some individuals can buy their
satiation vector. If we assume for the moment that this is true empirically and the income level
just sufficient to buy the expected satiation vector pS is known (and not much different for different
individuals 1), then the satiation value S(k) for the x-th category could be found by reading off the
ordinate value when the abscissa is equal to pS. Since the price vectors for the two survey years
are slightly different their expected satiation income pS in 1972$ could be different, but it is not
too unreasonable to assume for purposes of roughly estimating S that the two expected satiation

incomes are equal.

With this rational in mind, straighy lines were fitted to the data for survey years 1972-73 and
1980-81. The two straight lines shown on Figures 1 to 8 for each category k are “eyeball” fits to the
data with greater weight given to the high end. It was assumed that at some very high income level
the ordinates of the two fitted lines for each category k would be sufficiently close to one another
that making the two ordinate values equal would distort very little the fits to the observed data
at the much lower income levels. We arbitrarily pegged this high per capita income level to be
$25,510, an income level about equivalent to that of a three person household income of $200,000
in 1987 dollars. Therefore, the abscissa where the two lines intersect is at $25,510. Their common
ordinate value is the estimate of S(k). This was done for each k except for k = Recreation whose
trend line in 1972-73 was ignored because it had a radically higher slope from that of 1980-81. On
Figure 8 only one trend line is shown; this means that two trend lines were estimated to be the
same. The estimates for S(k) are tabulated in Table 1.

Admittedly this is a pretty crude “eye ball” way to estimate S, nevertheless the resulting linear
fits appear to be reasonably good in most cuses. The real test, however, is not how good is the
estimate of S but how good is the per capita demand function (5.11.0), found using this estimate

of S and price and per capita consumption data in various years to estimate H.

Estimating the positive definite matrix H = M1,

The values estimated for the elements of matrix H are also tabulated in Table 1. The matrix
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H = [H,;] was estimated by a technique of solving a semi-infinite linear program recently developed
by Hu Hui [10] that finds a least square fit under the restrictions that H be symmetric, positive
definite and EX H;; = 1. The least square fit was made to (5.11.0) after multiplying the equation
by p' Hp. The source data for this estimate was (a) the guess of satiation levels S described above,
and (b) the observed X,, which we denote by X,, and observed prices p, from the national income
and product accounts of the U.S. for years ¢t from 1961 to 1982. Per capita income was assumed
to be the observed values I; = pﬂ)h. Observed X, which are indices of physical quantities of
consumption, are tabulated in 1972$ in Table 3 for each of the eight categories for each year ¢ from
1961 to 1982. The corresponding prices p; for these items deflated to base year 1972 prices are
tabulated in Table 4. The predicted values of X, using the per capita demand function (5.11.0)
with the estimated parameter values given in Table 1, are tabulated in Table § for each of the
22 years. A comparison of how well predicted X; compares with observed X, can be made by
comparing Table 3 with Table 5 or by comparing the solid line curves with the broken line curves
in Figures 9 to 16 immediately following Table 5. Note the excellence of the fit. The average
percent error of fit can be found at the bottom of Table 5.

The average price, after the price vector p; is normalized by using (p}Hp)'/? as numeraire,
are tabulated in the last column of Table 4. It can be seen that these differ only slightly from unity,
which would have been their average, had they been normalized using average price as numeraire.
Thus an investor would be quite indifferent as to which of the two ways is chosen to normalize
future prices before calculating a rate of return.
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Kl Table 1

‘Y
$ - o PS-I,

" ESTIMATED DEMAND FUNCTION: S - X, = —-‘7—'- - Hp,

;: peHp,

)

" t
“' o
' Entries in columns below are estimated Hg, x 1000 for k > £
iy
:. House Recrea- Per.

% Food Cloth Housing Oper. Transp. tion Care Other
Y k Est. t=(1) (2) 3 4 (5) ©® (M (@®
. (1) Food 2666 30 ;
o (2) Clothing 1970 1 35 :
)

(3) Housing 4670 7 33 (&4
N (4) House Oper. 2050 -6 —14 20 110
¢

e (5) Transp. 3479 10 9 8 54 54 ]
?! (6) Recreation 2253 18 -17 -2 -3 20 56 ]
N (7) Per. Care 526 12 20 -7 -7 -1 -1 97 ‘
D0y

) (8) Other 7340 16 15 54 49 32 23 -18 145 !
E‘. Entries H, above the diagonal = H 4, below the diagonal )
b b
i
3 \
;:: p: = observed price vector (period t) from time series (Table 3) )
p X; = observed per capita consumption vector from time series (Table 4)

.

< I, = observed per capita total consumption income = p{)?g (Total Column, Table 4)
)
[/ -
:: S = estimated per capita satiation vector
)
i H = estimated positive definite symmetric matrix* ;
" X, = per capita consumption vector predicted by demand function
.
" ]
! * Estimated by a method developed by Hu Hui that yields least square fit subject to H being positive
)

v definite {10].
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Figure 1

FOOD, TOBACCO, ALCOHOL EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Figure 3 )
o
CLOTHING EXPENDITURES i
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Figure 3

HOUSING EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Figure 4

HOUSEHOLD EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Figure §

TRANSPORTATION EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Figure 8

RECREATION EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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PERSONAL CARE EXPENDITURES
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Figure 8

OTHER EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION
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Table 3

i: CESEIED OONSMPTION PER QAPTTA IY YEARS (19723)
BY NIPA CXTHCORIES

AL PO

YEAR FOOD QOTH HOUSING Ol.?l@g. TRANSP. RECREATION CARE OTHER TOTAL
1960 700 203 448 216 27 178 429 2568
1962 699 208 465 224 37 186 432 2
1963 69 209 480 231 347 196 446 2677
1966 712 222 496 26 360 203 470 |
1965 732 228 516 255 378 217 77 489 2892
1966 743 239 533 271 398 2 80 506 014
1967 748 236 550 275 413 54 82 52 3080
1968 768 244 570 282 440 268 84 544 3x0
199 775 7 592 286 467 219 83 567 3296
190 789 21 605 230 478 289 83 586 3351
971 785 249 621 279 503 293 80 603 B Tk
*g72 7% 264 649 297 S41 318 82 622 3566
1973 785 280 675 3z 568 342 635 3684
1976 774 274 692 305 557 350 635 3665
197 787 282 709 285 564 362 648 7o
1976 3818 293 738 291 600 384 671 3867
1977 838 X046 766 06 631 406 698 s
1978 8% 39 am 7 662 433 712 4166
199 83 ul 813 K. 655 450 735 429
1990 8% M2 826 71 611 452 745 L22h
1981 852 32 848 318 605 413 762 431
1982 852 64 860 02 606 474 778 4304
*base year
SOURCE: National Income ard Product Acounts, special supplemant to the Survey of Qurrent

Businsss Statistic Tahles published Septenmber 1981 for years 1929-76, 1976-79 and

Revised Estimates published July 1983/Vol. 63, No. 7. Tabla 2.4 Personal
Consumption Expenditures by Type of Expenditure.
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Table 4
P, OBSERVED PRICES BY YRARS RELATIVE TO BASE YEAR 1972
BY NIPA CATEGORIES
HOUSE RECREA-  PER. _
YEAR FOOD CLOTH HOUSING OPER. TRANSP.  TION CARE OTHER en
1961 97  1.01 1.07 1.0S 1.08 1.07 1.03 .86 1.03
1962 .96 1.00 1.06 1.04 1.08 1.07 1.02 .88 1.02
1963 .96 1.00 1.06 1.06 1.04 1.07 1.03 91 1.02
1964 .97 .99 1.05 1.04 1.06 1.07 1.02 .89 1.02
1965 .97 .98 1.06 1.03 1.06 1.07 1.03 .92 1.0l
1966 .99 .98 1.03 1.03 1.05 1.08 1.03 .92 1.01
1967 .98 1.00 1.02 1.02 1.06 1.04 1.03 .93 1.02
1968 .98 1.02 1.01 1.03 1.03 1.06 1.06 .96 1.0L
1969 .99 1.03 1.00 1.02 1.02 1.03 1.02 .97 1.0L
1970 1.00 1.02 .99 1.02 1.01 1.01 1.02 .98 1.01
1971 99 1.01 1.00 1.01 1.02 1.00 1.01 97 1.00
#1972 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1973  1.05 .98 1.00 97 .97 .97 .99 1.01 1.00
1974 1.08 99 .98 .98 .99 93 .99 .99 1.00
1975  1.07 91 .98 1.01 .99 91 1.03 1.00 1.00
1976 1.05 .90 .99 1.03 1.01 .90 1.05 1.03 .99
1977  1.04 .88 1.00 1.00 1.03 .88 1.06 1.04 .99
1978  1.06 .86 1.00 1.01 1.02 .85 1.07 1.06 .99
1979 1.07 .80 1.01 .99 1.06 .81 1.07 1.07 .98
1980 1.05 75 1.02 .97 1.12 J79 1.06 1.07 .97
1981  1.05 J1 1.03 .97 1.13 J7 1.06 1.07 .97
1982 1.04 .69 1.05 .99 1.09 77 1.10 1.08 .97

* base year

SOURCE:

enc

National Incoms and Product Accounts, special supplement to the Survey
of Current Business Statistic Tables published September 1981 for

years 1929-76, 1976~79 and Revised Estimates published July 1983/Vol.

63, No. 7.
Expenditure.

current dollars ia Table 2.5 with those in Table 2.4.

= average value of components of ;t - pt/(péﬂp:)
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Table 5

X  PREDICTED CONSUMPTION PER CAPITYA B3Y YRARS (19723)

€ sy NIPA CATEGORIES BASED OM DEMAMD PUMCTION

HOUSE PER. ¢
YEAR FOOD CLOTH HOUSING OPER. TRANSP. RECREATION CARE OTHER :
1961 703 177 431 228 322 189 68 456 v
1962 713 194 454 219 327 185 89 463 ,
1963 723 200 466 228 351 196 85 430 1
1964 718 226 498 227 162 181 97 a7 o
1965 728 237 536 255 382 194 77 »85 >
1966 731 262 558 267 408 219 69 523 X
1967 7446 228 562 295 428 245 47 516 i
1968 763 236 587 293 456 271 52 543 i
1969 772 242 601 288 478 287 75 556 4
1970 775 249 615 281 492 306 78 558 v
1971 788 246 616 286 493 315 86 585 N
1972 798 271 645 285 534 328 110 598 \]
1973 783 213 663 337 578 342 77 633 )
1974 767 282 682 312 556 146 81 841 3
197 778 299 708 285 573 163 71 640
1976 812 314 738 260 595 397 96 659 3
1977 835 317 763 291 610 423 80 706 '
1978 839 334 799 312 665 442 66 723 N
1979 845 338 821 334 636 459 56 157 .
1980 852  34é 838 329 $92 444 72 754 \
1981 859 359 850 3l 599 451 90 766 .
1982 866 357 837 318 643 469 57 760 ]
3 2666 1970 4670 2050 3479 2253 526 7340 &
Avg. % o
|erroe| .9 3.4 1.7 3.4 2.1 3.8 17.1 2.2 3¥
-~ 23
% |erros| = 100 Iick - z:kllick. X., are tabulated in Table 3. N
i: computed using per capita desmand function given ia Table l. .|‘
Graphs that follow this Table comparing X with X are §
by lsabel Pereira. v
4
l"
]
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FOOD, TOBACCO, ALCOHOL EXPENDITURES PER CAPITA
FOR YEARS 1961-1982

. e e .
5.."‘.“ ! o

"



P Wo Ny M T 7 RN RKY O R RO WO AN A U ALY Y VTR ‘Q,
’ t

Figure 10 hat

CLOTHING EXPENDITURES PER CAPITA N
FOR YEARS 1961-1982 o

375

OBSERVED

WHT ibased on demand functi n)m M 1.

1972 DOLLARS
21 300 323 3%0

223 ' 2%
PYE o gt L

PR

175

-

1960 1968 1970 1078 1900
YEAR

M B

R

2 AT VS

61

B
Pl
K ]

R T S L A A A e o b Fr S St e e i e .



Figure 11

HOUSING EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 12
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Figure 13

TRANSPORTATION EXPENDITURES PER CAPITA

FOR YEARS 1961-1982
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Figure 14

RECREATION EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 15

PERSONAL CARE EXPENDITURES PER CAPITA
FOR YEARS 1961-1982 A
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OTHER EXPENDITURES PER CAPITA
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